Analytical and Bioanalytical Chemistry

, Volume 409, Issue 8, pp 2029–2035 | Cite as

Laboratory calibration of a POCIS-like sampler based on molecularly imprinted polymers for glyphosate and AMPA sampling in water

  • Catherine BerhoEmail author
  • Bérengère Claude
  • Emeline Coisy
  • Anne Togola
  • Sami Bayoudh
  • Philippe Morin
  • Laurence Amalric
Research Paper


For more than 15 years, integrative passive sampling has been successfully used for monitoring contaminants in water, but no passive sampling device exists for strongly polar organic compounds, such as glyphosate. We thus propose a polar organic chemical integrative sampler (POCIS)-like tool dedicated to glyphosate and its main degradation product aminomethylphosphonic acid (AMPA), and describe the laboratory calibration of such a tool for calculating the sampling rates of glyphosate and AMPA. This passive sampler consists of a POCIS with molecularly imprinted polymer as a receiving phase and a polyethersulfone diffusion membrane. The calibration experiment for the POCIS was conducted for 35 days in a continuous water-flow-through exposure system. The calibration results show that the sampling rates are 111 and 122 mL day-1 for glyphosate and AMPA respectively, highlighting the potential interest in and the applicability of this method for environmental monitoring. The influence of membrane porosity on the glyphosate sampling rate was also tested.

Graphical Abstract


Glyphosate Aminomethylphosphonic acid Molecularly imprinted polymer Polar organic chemical integrative sampler Laboratory calibration Water 



The authors thank the French National Research Agency (ANR) for its financial support of the ECOTECH 2011 ORIGAMI project ANR-11-ECOT-0003. H.M. Kluijver edited the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_150_MOESM1_ESM.pdf (180 kb)
ESM 1 (PDF 180 kb)


  1. 1.
    Allan IJ, Vrana B, Greenwood R, Mills GA, Roig B, Gonzalez C. A "toolbox" for biological and chemical monitoring requirements for the European Union's Water Framework Directive. Talanta. 2006. doi: 10.1016/j.talanta.2005.09.043.Google Scholar
  2. 2.
    Vrana B, Allan I, Greenwood R, Mills G, Dominiak E, Svensson K, et al. Passive sampling techniques for monitoring pollutants in water. Trends Anal Chem. 2005. doi: 10.1016/j.trac.2005.06.006.Google Scholar
  3. 3.
    Stuer-Lauridsen F. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment. Environ Pollut. 2005. doi: 10.1016/j.envpol.2004.12.004.Google Scholar
  4. 4.
    Kot-Wasik A, Zabiegata B, Urbanowicz M, Dominiak E, Wasik A, Namiesnik J. Advances in passive sampling in environmental studies. Anal Chim Acta. 2007. doi: 10.1016/j.aca.2007.09.013.Google Scholar
  5. 5.
    Söderström H, Lindberg RH, Fick J. Strategies for monitoring the emerging polar organic contaminants in water with emphasis on integrative passive sampling. J Chromatogr A. 2009. doi: 10.1016/j.chroma.2008.08.030.Google Scholar
  6. 6.
    European Commission. Guidance document no. 19. Guidance on surface water chemical monitoring under the Water Framework Directive. Technical report - 2009 - 025. Luxembourg: Office for Official Publications of the European Communities; 2009.Google Scholar
  7. 7.
    Borggaard OK, Gimsing AL. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci. 2008. doi: 10.1002/ps.1512.Google Scholar
  8. 8.
    Vereecken H. Mobility and leaching of glyphosate: a review. Pest Manag Sci. 2005. doi: 10.1002/ps.1122.Google Scholar
  9. 9.
    Byer JD, Struger J, Klawunn P, Todd A, Sverko E. Low cost monitoring of glyphosate in surface waters using the ELISA method: an evaluation. Environ Sci Technol. 2008. doi: 10.1021/es8005207.Google Scholar
  10. 10.
    Alvarez DA. Development of an integrative sampling device for hydrophilic organic contaminants in aquatic environments. PhD thesis, University of Missouri-Columbia: 1999.Google Scholar
  11. 11.
    Mazzella N, Dubernet JF, Delmas F. Determination of kinetic and equilibrium regimes in the operation of polar organic chemical integrative samplers. Application to the passive sampling of the polar herbicides in aquatic environments. J Chromatogr A. 2007. doi: 10.1016/j.chroma.2007.03.087.Google Scholar
  12. 12.
    Berho C, Togola A, Coureau C, Ghestem JP, Amalric L. Applicability of polar organic compound integrative samplers for monitoring pesticides in groundwater. Environ Sci Pollut Res. 2013;20:5220–8. doi: 10.1007/s11356-013-1508-1.CrossRefGoogle Scholar
  13. 13.
    MacLeod S, McClure E, Wong C. Laboratory calibration and field deployment of the polar organic chemical integrative sampler for pharmaceuticals and personal care products in wastewater and surface water. Environ Toxicol Chem. 2007. doi: 10.1897/07-238.1.Google Scholar
  14. 14.
    Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, et al. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem. 2004. doi: 10.1897/03-603.Google Scholar
  15. 15.
    Li H, Helm PA, Paterson G, Metcalfe CD. The effects of dissolved organic matter and pH on sampling rates for polar organic chemical integrative samplers (POCIS). Chemosphere. 2011. doi: 10.1016/j.chemosphere.2010.12.071.Google Scholar
  16. 16.
    Fauvelle V, Mazzella N, Delmas F, Madarassou K, Eon M, Budzinski H. Use of mixed-mode ion exchange sorbent for the passive sampling of organic acids by polar organic chemical integrative sampler (POCIS). Environ Sci Technol. 2012. doi: 10.1021/es3035279.Google Scholar
  17. 17.
    Fauvelle V, Mazzella N, Belles A, Moreira A, Allan IJ, Budzinski H. Optimization of the polar organic chemical integrative sampler for the sampling of acidic and polar herbicides. Anal Bioanal Chem. 2014. doi: 10.1007/s00216-014-7757-0.Google Scholar
  18. 18.
    Sánchez-Bayo F, Hyne RV, Desseille KL. An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Anal Chim Acta. 2010;675:125–31. doi: 10.1016/j.aca.2010.07.013.CrossRefGoogle Scholar
  19. 19.
    Fauvelle V, Nhu-Trang TT, Feret T, Madarassou K, Randon J, Mazzella N. Evaluation of TiO2 as a binding phase for the passive sampling of glyphosate and AMPA in an aquatic environment. Anal Chem. 2015. doi: 10.1021/acs.analchem.5b00194.Google Scholar
  20. 20.
    Puzio K, Claude B, Amalric L, Berho C, Grellet E, Bayoudh S, et al. Molecularly imprinted polymer dedicated to the extraction of glyphosate in natural waters. J Chromatogr A. 2014;1361:1–8. doi: 10.1016/j.chroma.2014.07.043.CrossRefGoogle Scholar
  21. 21.
    Ibrahim I, Togola A, Gonzalez C. Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration. Environ Sci Pollut Res. 2013. doi: 10.1007/s11356-012-1284-3.Google Scholar
  22. 22.
    Huckins JN, Booij K, Petty JD. Monitors of organic chemicals in the environment. Semipermeable membrane devices. New York: Springer; 2006.Google Scholar
  23. 23.
    Belles A, Pardon P, Budzinski H. Development of an adapted version of polar organic chemical integrative samplers (POCIS-nylon). Anal Bioanal Chem. 2014;406:1099–110. doi: 10.1007/s00216-013-7286-2.CrossRefGoogle Scholar
  24. 24.
    Kaserzon SL, Hawker DW, Kennedy K, Bartkow M, Carter S, Booij K, et al. Characterisation and comparison of the uptake of ionisable and polar pesticides, pharmaceuticals and personal care products by POCIS and Chemcatchers. Environ Sci Process Impacts. 2014. doi: 10.1039/c4em00392f.Google Scholar
  25. 25.
    Soulier C. Présence et devenir des alkylphénols, de leurs dérivés et des composés pharmaceutiques dans les effluents. Intérêt des échantillonneurs passifs. Thesis, University od Bordeaux 1.

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Catherine Berho
    • 1
    Email author
  • Bérengère Claude
    • 2
  • Emeline Coisy
    • 1
  • Anne Togola
    • 1
  • Sami Bayoudh
    • 3
  • Philippe Morin
    • 2
  • Laurence Amalric
    • 1
  1. 1.Bureau de Recherches Géologiques et MinièresLaboratory DivisionOrléans Cedex 2France
  2. 2.Institut de Chimie Organique et Analytique, UMR 7311Université d’OrléansOrléans Cedex 2France
  3. 3.Affinisep CompagnyPôle d’innovation des CouronnesPetit-CouronneFrance

Personalised recommendations