Analytical and Bioanalytical Chemistry

, Volume 409, Issue 7, pp 1827–1836 | Cite as

SPRi-MALDI MS: characterization and identification of a kinase from cell lysate by specific interaction with different designed ankyrin repeat proteins

  • Ulrike Anders
  • Jonas V. Schaefer
  • Fatima-Ezzahra Hibti
  • Chiraz Frydman
  • Detlev Suckau
  • Andreas Plückthun
  • Renato Zenobi
Research Paper


We report on the direct coupling of surface plasmon resonance imaging (SPRi) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the investigation of specific, non-covalent interactions, using the example of designed ankyrin repeat proteins (DARPins) and ribosomal protein S6 kinase 2 (RPS6KA2) directly from lysate of SH-SY5Y cells, derived from human bone marrow. Due to an array format, tracing of binding kinetics of numerous DARPins simultaneously and in real time becomes possible. By optimizing both the proteolytic digest directly on the SPRi chip (amount of trypsin, incubation time, and temperature) as well as the MALDI matrix application (concentration of matrix and number of spray cycles), we are able to identify the specific interaction with RPS6KA2 directly from the cell lysate at a surface coverage of only 0.8 fmol/mm2.

Graphical Abstract

Workflow of the direct coupling of SPRi with MALDI mass spectrometry


Surface plasmon resonance imaging (SPRi) MALDI mass spectrometry Designed ankyrin repeat proteins (DAPRins) Cell lysate Label-free 



We thank Horiba Jobin Yvon for the loan of an SPRi instrument and Bruker Daltonics and Horiba Jobin Yvon for jointly funding 1.5 years of a Ph.D. studentship awarded to U.A. We also thank all current and former members of the High-Throughput Binder Selection Facility for their contribution to the establishment of the semi-automated ribosome display that resulted in the used DARPin binders. The RPS6KA2 target used for DARPin selection and the experiments described here was kindly provided by Dr. Susanne Müller-Knapp and Tracy Keates (SGC Oxford). Chia-Lung Yang (group of Prof. Olga Shakhova) kindly provided the cell lysate of SH-SY5Y (Department of Oncology, University Hospital Zurich).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_127_MOESM1_ESM.pdf (3.2 mb)
ESM 1(PDF 3.18 MB)


  1. 1.
    Krone JR, Nelson RW, Dogruel D, Williams P, Granzow R. BIA/MS: interfacing biomolecular interaction analysis with mass spectrometry. Anal Biochem. 1997;244(1):124–32. doi:10.1006/abio.1996.9871.CrossRefGoogle Scholar
  2. 2.
    Nelson RW, Krone JR, Jansson O. Surface plasmon resonance biomolecular interaction analysis mass spectrometry. 1. Chip-based analysis. Anal Chem. 1997;69(21):4363–8. doi:10.1021/ac970538w.CrossRefGoogle Scholar
  3. 3.
    Nelson RW, Krone JR. Advances in surface plasmon resonance biomolecular interaction analysis mass spectrometry (BIA/MS). J Mol Recognit. 1999;12(2):77–93. doi:10.1002/(SICI)1099-1352(199903/04)12:2<77::AID-JMR448>3.0.CO;2-G.CrossRefGoogle Scholar
  4. 4.
    Sönksen CP, Nordhoff E, Jansson Ö, Malmqvist M, Roepstorff P. Combining MALDI mass spectrometry and biomolecular interaction analysis using a biomolecular interaction analysis instrument. Anal Chem. 1998;70(13):2731–6. doi:10.1021/ac9800457.CrossRefGoogle Scholar
  5. 5.
    Natsume T, Nakayama H, Jansson Ö, Isobe T, Takio K, Mikoshiba K. Combination of biomolecular interaction analysis and mass spectrometric amino acid sequencing. Anal Chem. 2000;72(17):4193–8. doi:10.1021/ac000167a.CrossRefGoogle Scholar
  6. 6.
    Mattei B, Cervone F, Roepstorff P. The interaction between endopolygalacturonase from Fusarium moniliforme and PGIP from Phaseolus vulgaris studied by surface plasmon resonance and mass spectrometry. Comp Funct Genom. 2001;2:359–64. doi:10.1002/cfg.113.CrossRefGoogle Scholar
  7. 7.
    Lopez F, Pichereaux C, Burlet-Schiltz O, Pradayrol L, Monsarrat B, Estève J-P. Improved sensitivity of biomolecular interaction analysis mass spectrometry for the identification of interacting molecules. Proteomics. 2003;3(4):402–12. doi:10.1002/pmic.200390055.CrossRefGoogle Scholar
  8. 8.
    Catimel B, Rothacker J, Catimel J, Faux M, Ross J, Connolly L, et al. Biosensor-based micro-affinity purification for the proteomic analysis of protein complexes. J Proteome Res. 2005;4(5):1646–56. doi:10.1021/pr050132x.CrossRefGoogle Scholar
  9. 9.
    Larsericsdotter H, Jansson Ö, Zhukov A, Areskoug D, Oscarsson S, Buijs J. Optimizing the surface plasmon resonance/mass spectrometry interface for functional proteomics applications: how to avoid and utilize nonspecific adsorption. Proteomics. 2006;6(8):2355–64. doi:10.1002/pmic.200401353.CrossRefGoogle Scholar
  10. 10.
    Bouffartigues E, Leh H, Anger-Leroy M, Rimsky S, Buckle M. Rapid coupling of surface plasmon resonance (SPR and SPRi) and ProteinChip™ based mass spectrometry for the identification of proteins in nucleoprotein interactions. Nucleic Acids Res. 2007;35(6):e39-e. doi:10.1093/nar/gkm030.CrossRefGoogle Scholar
  11. 11.
    Visser NFC, Scholten A, van den Heuvel RHH, Heck AJR. Surface-plasmon-resonance-based chemical proteomics: efficient specific extraction and semiquantitative identification of cyclic nucleotide-binding proteins from cellular lysates by using a combination of surface plasmon resonance, sequential elution and liquid chromatography–tandem mass spectrometry. ChemBioChem. 2007;8(3):298–305. doi:10.1002/cbic.200600449.CrossRefGoogle Scholar
  12. 12.
    Hayano T, Yamauchi Y, Asano K, Tsujimura T, Hashimoto S, Isobe T, et al. Automated SPR-LC−MS/MS system for protein interaction analysis. J Proteome Res. 2008;7(9):4183–90. doi:10.1021/pr700834n.CrossRefGoogle Scholar
  13. 13.
    Marchesini GR, Buijs J, Haasnoot W, Hooijerink D, Jansson O, Nielen MWF. Nanoscale affinity chip interface for coupling inhibition SPR immunosensor screening with nano-LC TOF MS. Anal Chem. 2008;80(4):1159–68. doi:10.1021/ac071564p.CrossRefGoogle Scholar
  14. 14.
    Stigter ECA, de Jong GJ, van Bennekom WP. Development of an on-line SPR-digestion-nanoLC-MS/MS system for the quantification and identification of interferon-γ in plasma. Biosens Bioelectron. 2009;24(7):2184–90. doi:10.1016/j.bios.2008.11.020.CrossRefGoogle Scholar
  15. 15.
    Treitz G, Gronewold TMA, Quandt E, Zabe-Kühn M. Combination of a SAW-biosensor with MALDI mass spectrometric analysis. Biosens Bioelectron. 2008;23(10):1496–502. doi:10.1016/j.bios.2008.01.013.CrossRefGoogle Scholar
  16. 16.
    Nedelkov D, Nelson RW. Practical considerations in BIA/MS: optimizing the biosensor–mass spectrometry interface. J Mol Recognit. 2000;13(3):140–5. doi:10.1002/1099-1352(200005/06)13:3<140::AID-JMR496>3.0.CO;2-P.CrossRefGoogle Scholar
  17. 17.
    Nedelkov D, Nelson RW. Exploring the limit of detection in biomolecular interaction analysis mass spectrometry (BIA/MS): detection of attomole amounts of native proteins present in complex biological mixtures. Anal Chim Acta. 2000;423(1):1–7. doi:10.1016/S0003-2670(00)01077-1.CrossRefGoogle Scholar
  18. 18.
    Nelson RW, Nedelkov D, Tubbs KA. Biomolecular interaction analysis mass spectrometry. Anal Chem. 2000;72(11):404 A–11. doi:10.1021/ac0028402.
  19. 19.
    Nelson RW, Nedelkov D, Tubbs KA. Biosensor chip mass spectrometry: a chip-based proteomics approach. Electrophoresis. 2000;21(6):1155–63. doi:10.1002/(SICI)1522-2683(20000401)21:6<1155::AID-ELPS1155>3.0.CO;2-X.CrossRefGoogle Scholar
  20. 20.
    Nedelkov D, Nelson RW. Analysis of native proteins from biological fluids by biomolecular interaction analysis mass spectrometry (BIA/MS): exploring the limit of detection, identification of non-specific binding and detection of multi-protein complexes. Biosens Bioelectron. 2001;16(9–12):1071–8. doi:10.1016/S0956-5663(01)00229-9.CrossRefGoogle Scholar
  21. 21.
    Grote J, Dankbar N, Gedig E, Koenig S. Surface plasmon resonance/mass spectrometry interface. Anal Chem. 2005;77(4):1157–62. doi:10.1021/ac049033d.CrossRefGoogle Scholar
  22. 22.
    Nedelkov D, Tubbs KA, Nelson RW. Surface plasmon resonance-enabled mass spectrometry arrays. Electrophoresis. 2006;27(18):3671–5. doi:10.1002/elps.200600065.CrossRefGoogle Scholar
  23. 23.
    Boireau W, Rouleau A, Lucchi G, Ducoroy P. Revisited BIA-MS combination: entire “on-a-chip” processing leading to the proteins identification at low femtomole to sub-femtomole levels. Biosens Bioelectron. 2009;24(5):1121–7. doi:10.1016/j.bios.2008.06.030.CrossRefGoogle Scholar
  24. 24.
    Rouleau A, Osta M, Lucchi G, Ducoroy P, Boireau W. Immuno-MALDI-MS in human plasma and on-chip biomarker characterizations at the femtomole level. Sensors. 2012;12(11):15119.CrossRefGoogle Scholar
  25. 25.
    Vassilios IA. Surface plasmon resonance (SPR) and ELISA methods for antibody determinations as tools for therapeutic monitoring of patients with acute lymphoblastic leukemia (ALL) after native or pegylated Escherichia coli and Erwinia chrysanthemi asparaginases. Biosensors and Molecular Technologies for Cancer Diagnostics. Series in Sensors: Taylor & Francis; 2012. p. 89–108.Google Scholar
  26. 26.
    Schlensog MD, Gronewold TMA, Tewes M, Famulok M, Quandt E. A Love-wave biosensor using nucleic acids as ligands. Sensor Actuat B-Chem. 2004;101(3):308–15. doi:10.1016/j.snb.2004.03.015.CrossRefGoogle Scholar
  27. 27.
    Nedelkov D. Development of surface plasmon resonance mass spectrometry array platform. Anal Chem. 2007;79(15):5987–90. doi:10.1021/ac070608r.CrossRefGoogle Scholar
  28. 28.
    Bellon S, Buchmann W, Gonnet F, Jarroux N, Anger-Leroy M, Guillonneau F, et al. Hyphenation of surface plasmon resonance imaging to matrix-assisted laser desorption ionization mass spectrometry by on-chip mass spectrometry and tandem mass spectrometry analysis. Anal Chem. 2009;81(18):7695–702. doi:10.1021/ac901140m.CrossRefGoogle Scholar
  29. 29.
    Remy-Martin F, El Osta M, Lucchi G, Zeggari R, Leblois T, Bellon S, et al. Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA–MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma. Anal Bioanal Chem. 2012;404(2):423–32. doi:10.1007/s00216-012-6130-4.CrossRefGoogle Scholar
  30. 30.
    Musso J, Buchmann W, Gonnet F, Jarroux N, Bellon S, Frydman C, et al. Biomarkers probed in saliva by surface plasmon resonance imaging coupled to matrix-assisted laser desorption/ionization mass spectrometry in array format. Anal Bioanal Chem. 2015;407(5):1285–94. doi:10.1007/s00216-014-8373-8.CrossRefGoogle Scholar
  31. 31.
    Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacool Toxicol. 2015;55(1):489–511. doi:10.1146/annurev-pharmtox-010611-134654.CrossRefGoogle Scholar
  32. 32.
    Boersma YL, Plückthun A. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr Opin Biotechnol. 2011;22(6):849–57. doi:10.1016/j.copbio.2011.06.004.CrossRefGoogle Scholar
  33. 33.
    Pancholi S, Lykkesfeldt AE, Hilmi C, Banerjee S, Leary A, Drury S, et al. ERBB2 influences the subcellular localization of the estrogen receptor in tamoxifen-resistant MCF-7 cells leading to the activation of AKT and RPS6KA2. Endocr-Relat Cancer. 2008;15(4):985–1002. doi:10.1677/erc-07-0240.CrossRefGoogle Scholar
  34. 34.
    Bignone PA, Lee KY, Liu Y, Emilion G, Finch J, Soosay AER et al. RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene. 2006;26(5):683–700.
  35. 35.
    Milosevic N, Kühnemuth B, Mühlberg L, Ripka S, Griesmann H, Lölkes C, et al. Synthetic lethality screen identifies RPS6KA2 as modifier of epidermal growth factor receptor activity in pancreatic cancer. Neoplasia. 2013;15(12):1354–62. doi:10.1593/neo.131660.CrossRefGoogle Scholar
  36. 36.
    Kretschmann E. Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results. Opt Commun. 1972;6(2):185–7. doi:10.1016/0030-4018(72)90224-6.CrossRefGoogle Scholar
  37. 37.
    Beavis RC, Chait BT, Fales HM. Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun Mass Spectrom. 1989;3(12):432–5. doi:10.1002/rcm.1290031207.CrossRefGoogle Scholar
  38. 38.
    Forest S, Breault-Turcot J, Chaurand P, Masson J-F. Surface plasmon resonance imaging-MALDI-TOF imaging mass spectrometry of thin tissue sections. Anal Chem. 2016;88(4):2072–9. doi:10.1021/acs.analchem.5b03309.CrossRefGoogle Scholar
  39. 39.
    Human Protein Atlas. Accessed 08.08.2016 2016.
  40. 40.
    Wang W, Fang Q, Hu Z. High-throughput peptide screening on a bimodal imprinting chip through MS-SPRi integration. In: Cretich M, Chiari M, editors. Peptide Microarrays: Methods and Protocols. New York, NY: Springer New York; 2016. p. 111–25.CrossRefGoogle Scholar
  41. 41.
    Ritorto MS, Ewan R, Perez-Oliva AB, Knebel A, Buhrlage SJ, Wightman M et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat Commun. 2014;5. doi:10.1038/ncomms5763Google Scholar
  42. 42.
    Haslam C, Hellicar J, Dunn A, Fuetterer A, Hardy N, Marshall P, et al. The evolution of MALDI-TOF mass spectrometry toward ultra-high-throughput screening: 1536-well format and beyond. J Biomol Screen. 2016;21(2):176–86. doi:10.1177/1087057115608605.CrossRefGoogle Scholar
  43. 43.
    Lee JH, Choi HS, Nasr KA, Ha M, Kim Y, Frangioni JV. High-throughput small molecule identification using MALDI-TOF and a nanolayered substrate. Anal Chem. 2011;83(13):5283–9. doi:10.1021/ac2006735.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ulrike Anders
    • 1
  • Jonas V. Schaefer
    • 2
  • Fatima-Ezzahra Hibti
    • 3
  • Chiraz Frydman
    • 3
  • Detlev Suckau
    • 4
  • Andreas Plückthun
    • 2
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland
  2. 2.Department of BiochemistryUniversity of ZurichZurichSwitzerland
  3. 3.Horiba Jobin Yvon S.A.S.PalaiseauFrance
  4. 4.Bruker DaltonicsBremenGermany

Personalised recommendations