Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 5, pp 1405–1413 | Cite as

NMR-based metabolomic approach to study urine samples of chronic inflammatory rheumatic disease patients

  • Alessia Vignoli
  • Donatella Maria Rodio
  • Anna Bellizzi
  • Anatoly Petrovich Sobolev
  • Elena Anzivino
  • Monica Mischitelli
  • Leonardo Tenori
  • Federico Marini
  • Roberta Priori
  • Rossana Scrivo
  • Guido ValesiniEmail author
  • Ada Francia
  • Manuela Morreale
  • Maria Rosa Ciardi
  • Marco Iannetta
  • Cristiana Campanella
  • Donatella Capitani
  • Claudio Luchinat
  • Valeria Pietropaolo
  • Luisa Mannina
Research Paper

Abstract

The nuclear magnetic resonance (NMR)-based metabolomic approach was used as analytical methodology to study the urine samples of chronic inflammatory rheumatic disease (CIRD) patients. The urine samples of CIRD patients were compared to the ones of both healthy subjects and patients with multiple sclerosis (MS), another immuno-mediated disease. Urine samples collected from 39 CIRD patients, 25 healthy subjects, and 26 MS patients were analyzed using 1H NMR spectroscopy, and the NMR spectra were examined using partial least squares-discriminant analysis (PLS-DA). PLS-DA models were validated by a double cross-validation procedure and randomization tests. Clear discriminations between CIRD patients and healthy controls (average diagnostic accuracy 83.5 ± 1.9%) as well as between CIRD patients and MS patients (diagnostic accuracy 81.1 ± 1.9%) were obtained. Leucine, alanine, 3-hydroxyisobutyric acid, hippuric acid, citric acid, 3-hydroxyisovaleric acid, and creatinine contributed to the discrimination; all of them being in a lower concentration in CIRD patients as compared to controls or to MS patients. The application of NMR metabolomics to study these still poorly understood diseases can be useful to better clarify the pathologic mechanisms; moreover, as a holistic approach, it allowed the detection of, by means of anomalous metabolic traits, the presence of other pathologies or pharmaceutical treatments not directly connected to CIRDs, giving comprehensive information on the general health state of individuals.

Graphical abstract

NMR-based metabolomic approach as a tool to study urine samples in CIRD patients with respect to MS patients and healthy controls

Keywords

Nuclear magnetic resonance spectroscopy Metabolomics Urine Multivariate data analysis Chronic inflammatory rheumatic diseases 

Abbreviations

CIRDs

Chronic inflammatory rheumatic diseases

COSY

Correlation spectroscopy

CSF

Cerebrospinal fluid

HMBC

Heteronuclear multiple bond correlation

HPLC

High-performance liquid chromatography

HSQC

Heteronuclear single quantum coherence

MS

Multiple sclerosis

NMR

Nuclear magnetic resonance

PLS-DA

Partial least squares-discriminant analysis

TMSP

Trimethylsilyl propionate

UTIs

Urinary tract infections

VIP

Variable importance in projection

Notes

Acknowledgements

This study has been developed within the “Unità di Metabolomica: Studi su Alimenti, Nutraceutici e Fluidi biologici” of the Sapienza University of Rome. This work has been partially supported by Fondazione Veronesi that granted L.T. through the Post-Doctoral Fellowship 2015 and by Ateneo 2015 (Sapienza University of Rome prot C26A15CJ98).

Compliance with ethical standards

The study received the approval by the local ethics committee in accordance with local requirements, and at the time of the collection, informed consent was obtained from each participant enrolled in the study.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2016_74_MOESM1_ESM.pdf (353 kb)
ESM 1 (PDF 352 kb)

References

  1. 1.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—the Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41:D801–7. doi: 10.1093/nar/gks1065.CrossRefGoogle Scholar
  2. 2.
    Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal Chem. 2007;79:6995–7004. doi: 10.1021/ac0708588.CrossRefGoogle Scholar
  3. 3.
    Liquid state 1H high field NMR in food analysis. http://www.sciencedirect.com/science/article/pii/S0079656512000209. Accessed 7 July 2016.
  4. 4.
    Pelantová H, Bártová S, Anýž J, Holubová M, Železná B, Maletínská L, et al. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Anal Bioanal Chem. 2015;408:567–78. doi: 10.1007/s00216-015-9133-0.CrossRefGoogle Scholar
  5. 5.
    Assfalg M, Bertini I, Colangiuli D, Luchinat C, Schäfer H, Schütz B, et al. Evidence of different metabolic phenotypes in humans. Proc Natl Acad Sci. 2008;105:1420–4. doi: 10.1073/pnas.0705685105.CrossRefGoogle Scholar
  6. 6.
    Bernini P, Bertini I, Luchinat C, Nepi S, Saccenti E, Schäfer H, et al. Individual human phenotypes in metabolic space and time. J Proteome Res. 2009;8:4264–71. doi: 10.1021/pr900344m.CrossRefGoogle Scholar
  7. 7.
    Ghini V, Saccenti E, Tenori L, Assfalg M, Luchinat C. Allostasis and resilience of the human individual metabolic phenotype. J Proteome Res. 2015. doi: 10.1021/acs.jproteome.5b00275.Google Scholar
  8. 8.
    Jones DP, Park Y, Ziegler TR. Nutritional metabolomics: progress in addressing complexity in diet and health. Annu Rev Nutr. 2012;32:183–202. doi: 10.1146/annurev-nutr-072610-145159.CrossRefGoogle Scholar
  9. 9.
    Bertini I, Calabrò A, De Carli V, Luchinat C, Nepi S, Porfirio B, et al. The metabonomic signature of celiac disease. J Proteome Res. 2008;8:170–7. doi: 10.1021/pr800548z.CrossRefGoogle Scholar
  10. 10.
    Priori R, Scrivo R, Brandt J, Valerio M, Casadei L, Valesini G, et al. Metabolomics in rheumatic diseases: the potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmun Rev. 2013;12:1022–30. doi: 10.1016/j.autrev.2013.04.002.CrossRefGoogle Scholar
  11. 11.
    Tenori L, Oakman C, Morris PG, Gralka E, Turner N, Cappadona S, et al. Serum metabolomic profiles evaluated after surgery may identify patients with oestrogen receptor negative early breast cancer at increased risk of disease recurrence. Results from a retrospective study. Mol Oncol. 2015;9:128–39. doi: 10.1016/j.molonc.2014.07.012.CrossRefGoogle Scholar
  12. 12.
    Bernini P, Bertini I, Luchinat C, Tenori L, Tognaccini A. The cardiovascular risk of healthy individuals studied by NMR metabonomics of plasma samples. J Proteome Res. 2011;10:4983–92. doi: 10.1021/pr200452j.CrossRefGoogle Scholar
  13. 13.
    Wang L, Wu L-F, Lu X, Mo X-B, Tang Z-X, Lei S-F, et al. Integrated analyses of gene expression profiles digs out common markers for rheumatic diseases. PLoS ONE. 2015;10:e0137522. doi: 10.1371/journal.pone.0137522.CrossRefGoogle Scholar
  14. 14.
    Bernini P, Bertini I, Luchinat C, Nincheri P, Staderini S, Turano P. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR. 2011;49:231–43. doi: 10.1007/s10858-011-9489-1.CrossRefGoogle Scholar
  15. 15.
    Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, et al. The human urine metabolome. PLoS ONE. 2013;8:e73076. doi: 10.1371/journal.pone.0073076.CrossRefGoogle Scholar
  16. 16.
    Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006;78:4281–90. doi: 10.1021/ac051632c.CrossRefGoogle Scholar
  17. 17.
    Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Stat Graph. 1996;5:299–314.Google Scholar
  18. 18.
    Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47:583. doi: 10.2307/2280779.CrossRefGoogle Scholar
  19. 19.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.Google Scholar
  20. 20.
    Hassan-Smith G, Wallace GR, Douglas MR, Sinclair AJ. The role of metabolomics in neurological disease. J Neuroimmunol. 2012;248:48–52. doi: 10.1016/j.jneuroim.2012.01.009.CrossRefGoogle Scholar
  21. 21.
    Young SP, Kapoor SR, Viant MR, Byrne JJ, Filer A, Buckley CD, et al. The impact of inflammation on metabolomic profiles in patients with arthritis. Arthritis Rheum. 2013;65:2015–23. doi: 10.1002/art.38021.CrossRefGoogle Scholar
  22. 22.
    Zabek A, Swierkot J, Malak A, Zawadzka I, Deja S, Bogunia-Kubik K, et al. Application of 1H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis. J Pharm Biomed Anal. 2016;117:544–50. doi: 10.1016/j.jpba.2015.10.007.CrossRefGoogle Scholar
  23. 23.
    Nevedomskaya E, Pacchiarotta T, Artemov A, Meissner A, van Nieuwkoop C, van Dissel JT, et al. 1H NMR-based metabolic profiling of urinary tract infection: combining multiple statistical models and clinical data. Metabolomics. 2012;8:1227–35. doi: 10.1007/s11306-012-0411-y.CrossRefGoogle Scholar
  24. 24.
    Puntis D, Malik S, Saravanan V, Rynne M, Heycock C, Hamilton J, et al. Urinary tract infections in patients with rheumatoid arthritis. Clin Rheumatol. 2012;32:355–60. doi: 10.1007/s10067-012-2129-7.CrossRefGoogle Scholar
  25. 25.
    Munro R, Capell H. Prevalence of low body mass in rheumatoid arthritis: association with the acute phase response. Ann Rheum Dis. 1997;56:326–9.CrossRefGoogle Scholar
  26. 26.
    Willer B, Stucki G, Hoppeler H, Brühlmann P, Krähenbühl S. Effects of creatine supplementation on muscle weakness in patients with rheumatoid arthritis. Rheumatol Oxf Engl. 2000;39:293–8.CrossRefGoogle Scholar
  27. 27.
    Krähenbühl S, Willer B, Brühlmann P, Hoppeler H, Stucki G. Carnitine homeostasis in patients with rheumatoid arthritis. Clin Chim Acta. 1999;279:35–45. doi: 10.1016/S0009-8981(98)00161-2.CrossRefGoogle Scholar
  28. 28.
    van Wietmarschen HA, Dai W, van der Kooij AJ, Reijmers TH, Schroën Y, Wang M, et al. Characterization of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics measurements. PLoS ONE. 2012;7:e44331. doi: 10.1371/journal.pone.0044331.CrossRefGoogle Scholar
  29. 29.
    Kapoor SR, Filer A, Fitzpatrick MA, Fisher BA, Taylor PC, Buckley CD, et al. Metabolic profiling predicts response to anti-tumor necrosis factor α therapy in patients with rheumatoid arthritis. Arthritis Rheum. 2013;65:1448–56. doi: 10.1002/art.37921.CrossRefGoogle Scholar
  30. 30.
    Mount D, Sayegh MH, Singh AK. Core concepts in the disorders of fluid, electrolytes and acid–base balance. New York: Springer Science & Business Media; 2012.Google Scholar
  31. 31.
    Dickens AM, Larkin JR, Griffin JL, Cavey A, Matthews L, Turner MR, et al. A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology. 2014;83:1492–9.CrossRefGoogle Scholar
  32. 32.
    Tavazzi B, Batocchi AP, Amorini AM, Nociti V, D’Urso S, Longo S, et al. Serum metabolic profile in multiple sclerosis patients. Mult Scler Int. 2011;2011:e167156. doi: 10.1155/2011/167156.Google Scholar
  33. 33.
    Reinke SN, Broadhurst DI, Sykes BD, Baker GB, Catz I, Warren KG, et al. Metabolomic profiling in multiple sclerosis: insights into biomarkers and pathogenesis. Mult Scler J. 2014;20:1396–400. doi: 10.1177/1352458513516528.CrossRefGoogle Scholar
  34. 34.
    Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol. 2005;3:431–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alessia Vignoli
    • 1
  • Donatella Maria Rodio
    • 2
  • Anna Bellizzi
    • 3
  • Anatoly Petrovich Sobolev
    • 4
  • Elena Anzivino
    • 2
  • Monica Mischitelli
    • 2
  • Leonardo Tenori
    • 5
  • Federico Marini
    • 6
  • Roberta Priori
    • 7
  • Rossana Scrivo
    • 7
  • Guido Valesini
    • 7
    Email author
  • Ada Francia
    • 8
  • Manuela Morreale
    • 8
  • Maria Rosa Ciardi
    • 2
  • Marco Iannetta
    • 2
  • Cristiana Campanella
    • 9
  • Donatella Capitani
    • 4
  • Claudio Luchinat
    • 1
    • 10
  • Valeria Pietropaolo
    • 2
  • Luisa Mannina
    • 9
    • 4
  1. 1.Magnetic Resonance Center (CERM)University of FlorenceSesto FiorentinoItaly
  2. 2.Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
  3. 3.Department of Public Health and Infectious Diseases, Institute Pasteur, Cenci Bolognetti FoundationSapienza University of RomeRomeItaly
  4. 4.Institute of Chemical Methodologies, “Annalaura Segre” Magnetic Resonance LaboratoryCNRMonterotondoItaly
  5. 5.FiorGen FoundationSesto FiorentinoItaly
  6. 6.Department of ChemistrySapienza University of RomeRomeItaly
  7. 7.Department of Internal Medicine and Medical Specialties, Rheumatology UnitSapienza University of RomeRomeItaly
  8. 8.Department of Neurology and PsychiatrySapienza University of RomeRomeItaly
  9. 9.Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
  10. 10.Department of ChemistryUniversity of FlorenceSesto FiorentinoItaly

Personalised recommendations