Analytical and Bioanalytical Chemistry

, Volume 409, Issue 5, pp 1323–1332 | Cite as

Quantification of three chlorinated dialkyl phosphates, diphenyl phosphate, 2,3,4,5-tetrabromobenzoic acid, and four other organophosphates in human urine by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry

  • Nayana K. Jayatilaka
  • Paula Restrepo
  • LaTasha Williams
  • Maria Ospina
  • Liza Valentin-Blasini
  • Antonia M. Calafat
Research Paper

Abstract

Polybrominated diphenyl ethers (PBDEs), produced as flame retardants worldwide, have been phased-out in many countries, and chlorinated and non-chlorinated organophosphates and non-PBDE brominated formulations (e.g., Firemaster 550 (FM550)) have entered the consumers’ market. Recent studies show that components of organophosphate esters and FM550 are frequently detected in many products common to human environments. Therefore, urinary metabolites of these compounds can be used as human exposure biomarkers. We developed a method to quantify nine compounds in 0.4 mL urine: diphenyl phosphate (DPhP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), bis-(1-chloro-2-propyl) phosphate, bis-2-chloroethyl phosphate, di-p-cresylphosphate, di-o-cresylphosphate (DoCP), di-n-butyl phosphate, dibenzyl phosphate (DBzP), and 2,3,4,5-tetrabromobenzoic acid. The method relies on an enzymatic hydrolysis of urinary conjugates of the target analytes, automated off-line solid phase extraction, reversed phase high performance liquid chromatography separation, and isotope dilution-electrospray ionization tandem mass spectrometry detection. The method is high-throughput (96 samples/day) with detection limits ranging from 0.05 to 0.16 ng mL−1. Spiked recoveries were 90–113 %, and interday imprecision was 2–8 %. We assessed the suitability of the method by analyzing urine samples collected from a convenience sample of adults (n = 76) and from a group of firefighters (n = 146). DPhP (median, 0.89; range, 0.26–5.6 ng mL−1) and BDCPP (median, 0.69; range, 0.31–6.8 ng mL−1) were detected in all of the non-occupationally exposed adult samples and all of the firefighter samples (DPhP [median, 2.9; range, 0.24–28 ng mL−1], BDCPP [median, 3.4; range, 0.30–44 ng mL−1]); DBzP and DoCP were not detected in any samples.

Keywords

Flame retardant Metabolite Urine Liquid chromatography Mass spectrometry 

References

  1. 1.
    de Wit CA. An overview of brominated flame retardants in the environment. Chemosphere. 2002;46(5):583–624.CrossRefGoogle Scholar
  2. 2.
    Stapleton HM, Sharma S, Getzinger G, Ferguson PL, Gabriel M, Webster TF, et al. Novel and high volume use flame retardants in us couches reflective of the 2005 PentaBDE phase out. Environ Sci Technol. 2012;46(24):13432–9.CrossRefGoogle Scholar
  3. 3.
    Tullo A. Great lakes to phase out two flame retardants. Chem Eng News. 2003;81(45):13.CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Betts K. Court bans widely used flame retardant. Environ Sci Technol. 2008;42(11):3910. doi:10.1021/es0871199.CrossRefGoogle Scholar
  6. 6.
    van der Veen I, de Boer J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012;88(10):1119–53.CrossRefGoogle Scholar
  7. 7.
    Covaci A, Harrad S, Abdallah MA, Ali N, Law RJ, Herzke D, et al. Novel brominated flame retardants: a review of their analysis, environmental fate and behavior. Environ Int. 2011;37(2):532–56.CrossRefGoogle Scholar
  8. 8.
    Solbu K, Thorud S, Hersson M, Ovrebo S, Ellingsen D, Lundanes E, et al. Determination of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by gas chromatography-mass spectrometry—development of methodology for combined aerosol and vapor sampling. J Chromatogr A. 2007;1161(1-2):275–83.CrossRefGoogle Scholar
  9. 9.
    Andresen JA, Grundmann A, Bester K. Organophosphorus flame retardants and plasticisers in surface waters. Sci Total Environ. 2004;332(1-3):155–66.CrossRefGoogle Scholar
  10. 10.
    Stapleton HM, Allen JG, Kelly SM, Konstantinov A, Klosterhaus S, Watkins D, et al. Alternate and new brominated flame retardants detected in US house dust. Environ Sci Technol. 2008;42(18):6910–6.CrossRefGoogle Scholar
  11. 11.
    Butt CM, Congleton J, Hoffman K, Fang ML, Stapleton HM. Metabolites of organophosphate flame retardants and 2-ethylhexyl tetrabromobenzoate in urine from paired mothers and toddlers. Environ Sci Technol. 2014;48(17):10432–8.CrossRefGoogle Scholar
  12. 12.
    Stapleton HM, Klosterhaus S, Keller A, Ferguson PL, van Bergen S, Cooper E, et al. Identification of flame retardants in polyurethane foam collected from baby products. Environ Sci Technol. 2011;45(12):5323–31.CrossRefGoogle Scholar
  13. 13.
    Carignan CC, McClean MD, Cooper EM, Watkins DJ, Fraser AJ, Heiger-Bernays W, et al. Predictors of tris(1,3-dichloro-2-propyl) phosphate metabolite in the urine of office workers. Environ Int. 2013;55:56–61.CrossRefGoogle Scholar
  14. 14.
    Dodson RE, Perovich LJ, Covaci A, Van den Eede N, Ionas AC, Dirtu AC, et al. After the PBDE phase-out: a broad suite of flame retardants in repeat house dust samples from California. Environ Sci Technol. 2012;46(24):13056–66.CrossRefGoogle Scholar
  15. 15.
    Stapleton HM, Klosterhaus S, Eagle S, Fuh J, Meeker JD, Blum A, et al. Detection of organophosphate flame retardants in furniture foam and US house dust. Environ Sci Technol. 2009;43(19):7490–5.CrossRefGoogle Scholar
  16. 16.
    Stapleton HM, Misenheimer J, Hoffman K, Webster TF. Flame retardant associations between children’s handwipes and house dust. Chemosphere. 2014;116:54–60.CrossRefGoogle Scholar
  17. 17.
    Dodson RE, Van den Eede N, Covaci A, Perovich LJ, Brody JG, Rudel RA. Urinary biomonitoring of phosphate flame retardants: levels in California adults and recommendations for future studies. Environ Sci Technol. 2014;48(23):13625–33. doi:10.1021/es503445c.CrossRefGoogle Scholar
  18. 18.
    Babich MA. CPSC staff preliminary risk assessment of flame retardant (FR) chemicals in upholstered furniture foam. US Consumer Product Safety Commission; 2006.Google Scholar
  19. 19.
    Dishaw LV, Powers CM, Ryde IT, Roberts SC, Seidler FJ, Slotkin TA, et al. Is the PentaBDE replacement, tris (1,3-dichloropropyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells. Toxicol Appl Pharmacol. 2011;256(3):281–9.CrossRefGoogle Scholar
  20. 20.
    Meeker JD, Cooper EM, Stapleton HM, Hauser R. Exploratory analysis of urinary metabolites of phosphorus-containing flame retardants in relation to markers of male reproductive health. Endocr Disruptors. 2013;1(1), e26306. doi:10.4161/endo.26306.CrossRefGoogle Scholar
  21. 21.
    Meeker JD, Stapleton HM. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters. Environ Health Perspect. 2010;118(3):318–23.CrossRefGoogle Scholar
  22. 22.
    Patisaul HB, Roberts SC, Mabrey N, McCaffrey KA, Gear RB, Braun J, et al. Accumulation and endocrine disrupting effects of the flame retardant mixture firemaster (R) 550 in rats: an exploratory assessment. J Biochem Mol Toxicol. 2013;27(2):124–36.CrossRefGoogle Scholar
  23. 23.
    Van den Eede N, Maho W, Erratico C, Neels H, Covaci A. First insights in the metabolism of phosphate flame retardants and plasticizers using human liver fractions. Toxicol Lett. 2013;223(1):9–15.CrossRefGoogle Scholar
  24. 24.
    Roberts SC, Macaulay LJ, Stapleton HM. In vitro metabolism of the brominated flame retardants 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) and bis(2-ethylhexyl) 2,3,4,5-tetrabromophthalate (TBPH) in human and rat tissues. Chem Res Toxicol. 2012;25(7):1435–41.CrossRefGoogle Scholar
  25. 25.
    Cooper EM, Covaci A, van Nuijs ALN, Webster TF, Stapleton HM. Analysis of the flame retardant metabolites bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and diphenyl phosphate (DPP) in urine using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2011;401(7):2123–32.CrossRefGoogle Scholar
  26. 26.
    Schindler BK, Foerster K, Angerer J. Determination of human urinary organophosphate flame retardant metabolites by solid-phase extraction and gas chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877(4):375–81.CrossRefGoogle Scholar
  27. 27.
    Van den Eede N, Neels H, Jorens PG, Covaci A. Analysis of organophosphate flame retardant diester metabolites in human urine by liquid chromatography electrospray ionisation tandem mass spectrometry. J Chromatogr A. 2013;1303:48–53.CrossRefGoogle Scholar
  28. 28.
    Reemtsma T, Lingott J, Roegler S. Determination of 14 monoalkyl phosphates, dialkyl phosphates and dialkyl thiophosphates by LC-MS/MS in human urinary samples. Sci Total Environ. 2011;409(10):1990–3.CrossRefGoogle Scholar
  29. 29.
    Schindler BK, Foerster K, Angerer J. Quantification of two urinary metabolites of organophosphorus flame retardants by solid-phase extraction and gas chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2009;395(4):1167–71.CrossRefGoogle Scholar
  30. 30.
    Pleil JD, Stiegel MA, Fent KW. Exploratory breath analyses for assessing toxic dermal exposures of firefighters during suppression of structural burns. J Breath Res. 2014;8(3):037107. doi:10.1088/1752-7155/8/3/037107.CrossRefGoogle Scholar
  31. 31.
    Fent KW, Eisenberg J, Snawder J, Sammons D, Pleil JD, Stiegel MA, et al. Systemic exposure to PAHs and benzene in firefighters suppressing controlled structure fires. Ann Occup Hyg. 2014;58(7):830–45. doi:10.1093/annhyg/meu036.CrossRefGoogle Scholar
  32. 32.
    Casarett and Doull’s toxicology: the basic science of poisons, vol 8. New York: McGraw-Hill Education; 2013.Google Scholar
  33. 33.
    Davis MD, Wade EL, Restrepo PR, Roman-Esteva W, Bravo R, Kuklenyik P, et al. Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine. J Chromatogr B. 2013;929:18–26. doi:10.1016/j.jchromb.2013.04.005.CrossRefGoogle Scholar
  34. 34.
    Kuklenyik P, Baker SE, Bishop AM, Morales-A P, Calafat AM. On-line solid phase extraction-high performance liquid chromatography–isotope dilution–tandem mass spectrometry approach to quantify N, N-diethyl-m-toluamide and oxidative metabolites in urine. Anal Chim Acta. 2013;787:267–73. doi:10.1016/j.aca.2013.05.055.CrossRefGoogle Scholar
  35. 35.
    Petropoulou SSE, Petreas M, Park JS. Analytical methodology using ion-pair liquid chromatography-tandem mass spectrometry for the determination of four di-ester metabolites of organophosphate flame retardants in California human urine. J Chromatogr A. 2016;1434:70–80. doi:10.1016/j.chroma.2016.01.020.CrossRefGoogle Scholar
  36. 36.
    Butt CM, Hoffman K, Chen A, Lorenzo A, Congleton J, Stapleton HM. Regional comparison of organophosphate flame retardant (PFR) urinary metabolites and tetrabromobenzoic acid (TBBA) in mother-toddler pairs from California and New Jersey. Environ Int. 2016; in press. doi:10.1016/j.envint.2016.06.029.
  37. 37.
    Su G, Letcher RJ, Yu H, Gooden DM, Stapleton HM. Determination of glucuronide conjugates of hydroxyl triphenyl phosphate (OH-TPHP) metabolites in human urine and its use as a biomarker of TPHP exposure. Chemosphere. 2016;149:314–9. doi:10.1016/j.chemosphere.2016.01.114.CrossRefGoogle Scholar
  38. 38.
    Matuszewski BK. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC–MS bioanalysis. J Chromatogr B. 2006;830(2006):293–300. doi:10.1016/j.jchromb.2005.11.009.CrossRefGoogle Scholar
  39. 39.
    Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75(13):3019–30.CrossRefGoogle Scholar
  40. 40.
    Caudill SP, Schleicher RL, Pirkle JL. Multi-rule quality control for the age-related eye disease study. Stat Med. 2008;27(20):4094–106. doi:10.1002/sim.3222.CrossRefGoogle Scholar
  41. 41.
    Taylor JK. Quality assurance of chemical measurements. Chelsea: Lewis Publishers; 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nayana K. Jayatilaka
    • 1
  • Paula Restrepo
    • 1
  • LaTasha Williams
    • 1
  • Maria Ospina
    • 1
  • Liza Valentin-Blasini
    • 1
  • Antonia M. Calafat
    • 1
  1. 1.Division of Laboratory Sciences, National Center for Environmental HealthCenters for Disease Control and PreventionAtlantaUSA

Personalised recommendations