Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 5, pp 1257–1269 | Cite as

Efficient recovery of glycosaminoglycan oligosaccharides from polyacrylamide gel electrophoresis combined with mass spectrometry analysis

  • Pierre-Edouard Bodet
  • Isabelle Salard
  • Cédric Przybylski
  • Florence Gonnet
  • Cathy Gomila
  • Jèrôme Ausseil
  • Régis Daniel
Research Paper

Abstract

To promote efficient separation and structural analysis of glycosaminoglycan oligosaccharides, we developed a straightforward method that combined gel electrophoresis and mass spectrometry (MS). Potential limitations of this approach (e.g., low extraction yields and weak compatibility with MS) were resolved by developing an active extraction procedure that yielded a quantitative amount of sulfated oligosaccharides from excised gel bands. The compatibility of obtained oligosaccharides for subsequent MS analysis was ensured using a single, simple clean-up step on a mixed C18/graphite carbon solid-phase column that was fully effective for polymerization degrees ranging from di- to dodecasaccharides. The reported combination of carbohydrates-polyacrylamide gel electrophoresis with MS was successfully applied to glucosamino- (heparin) and galactosamino- (dermantan sulfate) glycans, demonstrating the potential of our method for structural analysis of bioactive sulfated carbohydrates extracted from biological matrices.

Graphical Abstract

Keywords

C-PAGE Gel extraction Glycosaminoglycan Mass spectrometry 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rabenstein DL. Heparin and heparan sulfate: structure and function. Nat Prod Rep. 2002;19(3):312–31.CrossRefGoogle Scholar
  2. 2.
    Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007;446:1030–7.CrossRefGoogle Scholar
  3. 3.
    Kamhi E, Joo EJ, Dordick JS, Linhardt RJ. Glycosaminoglycans in infectious disease. Biol Rev Camb Philos Soc. 2013;88(4):928–43.CrossRefGoogle Scholar
  4. 4.
    Esko JD, Lindahl U. Molecular diversity of heparan sulfate. J Clin Invest. 2001;108(2):169–73.CrossRefGoogle Scholar
  5. 5.
    Kreuger J, Spillmann D, Li JP, Lindahl U. Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol. 2006;174(3):323–7.CrossRefGoogle Scholar
  6. 6.
    Zaia J. Principles of mass spectrometry of glycosaminoglycans. J Biomacromol Mass Spectrom. 2005;1(1):3–36.Google Scholar
  7. 7.
    Zhang Y, Conrad AH, Tasheva ES, An K, Corpuz LM, Kariya Y, et al. Detection and quantification of sulfated disaccharides from keratan sulfate and chondroitin/dermatan sulfate during chick corneal development by ESI-MS/MS. Invest Ophthalmol Vis Sci. 2005;46(5):1604–14.CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Kariya Y, Conrad AH, Tasheva ES, Conrad GW. Analysis of keratan sulfate oligosaccharides by electrospray ionization tandem mass spectrometry. Anal Chem. 2005;77(3):902–10.CrossRefGoogle Scholar
  9. 9.
    Przybylski C, Gonnet F, Bonnaffé D, Hersant Y, Lortat-Jacob H, Daniel R. HABA-based ionic liquid matrices for UV-MALDI-MS analysis of heparin and heparan sulfate oligosaccharides. Glycobiology. 2010;20(2):224–34.CrossRefGoogle Scholar
  10. 10.
    Przybylski C, Gonnet F, Buchmann W, Daniel R. Critical parameters for the analysis of anionic oligosaccharides by desorption electrospray ionization mass spectrometry. J Mass Spectrom. 2012;47(8):1047–58.CrossRefGoogle Scholar
  11. 11.
    Kailemia MJ, Li L, Ly M, Linhardt RJ, Amster IJ. Complete mass spectral characterization of a synthetic ultralow-molecular-weight heparin using collision-induced dissociation. Anal Chem. 2012;84(13):5475–8.CrossRefGoogle Scholar
  12. 12.
    Zaia J. Glycosaminoglycans glycomics using mass spectrometry. Mol Cell Proteomics. 2013;12(4):885–92.CrossRefGoogle Scholar
  13. 13.
    Jones CJ, Beni S, Larive CK. Understanding the effect of the counterion on the reverse-phase ion-pair high-performance liquid chromatography (RPIP-HPLC) resolution of heparin-related saccharide anomers. Anal Chem. 2011;83(17):6762–9.CrossRefGoogle Scholar
  14. 14.
    Langeslay DJ, Urso E, Gardini C, Naggi A, Torri G, Larive CK. Reversed-phase ion-pair ultra-high-performance-liquid chromatography-mass spectrometry for fingerprinting low-molecular-weight heparins. J Chromatogr A. 2013;1292:201–10.CrossRefGoogle Scholar
  15. 15.
    Deakin JA, Lyon M. A simplified and sensitive fluorescent method for disaccharide analysis of both heparan sulfate and chondroitin/dermatan sulfates from biological samples. Glycobiology. 2008;18(6):483–91.CrossRefGoogle Scholar
  16. 16.
    Volpi N, Linhardt RJ. High-performance liquid chromatography-mass spectrometry for mapping and sequencing glycosaminoglycan-derived oligosaccharides. Nat Protoc. 2010;5(6):993–1004.CrossRefGoogle Scholar
  17. 17.
    Volpi N. High-performance liquid chromatography and on-line mass spectrometry detection for the analysis of chondroitin sulfates/hyaluronan disaccharides derivatized with 2-aminoacridone. Anal Biochem. 2010;397(1):12–23.CrossRefGoogle Scholar
  18. 18.
    Galeotti F, Volpi N. Online reverse phase-high-performance liquid chromatography-fluorescence detection-electrospray ionization-mass spectrometry separation and characterization of heparan sulfate, heparin, and low-molecular weight-heparin disaccharides derivatized with 2-ami. Anal Chem. 2011;83(1):6770–7.CrossRefGoogle Scholar
  19. 19.
    Volpi N, Galeotti F, Yang B, Linhardt RJ. Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone-labeled disaccharides with LC-fluorescence and LC-MS detection. Nat Protoc. 2014;9(3):541–58.CrossRefGoogle Scholar
  20. 20.
    Karlsson NG, Schulz BL, Packer NH, Whitelock JM. Use of graphitised carbon negative ion LC-MS to analyse enzymatically digested glycosaminoglycans. J Chromatogr B. 2005;824(1-2):139–47.CrossRefGoogle Scholar
  21. 21.
    Wei W, Niñonuevo MR, Sharma A, Danan-Leon LM, Leary JA. A comprehensive compositional analysis of heparin/heparan sulfate-derived disaccharides from human serum. Anal Chem. 2011;83(10):3703–8.CrossRefGoogle Scholar
  22. 22.
    Wei W, Miller RL, Leary JA. Method development and analysis of free HS and HS in proteoglycans from pre- and postmenopausal women: evidence for biosynthetic pathway changes in sulfotransferase and sulfatase enzymes. Anal Chem. 2013;85(12):5917–23.CrossRefGoogle Scholar
  23. 23.
    Li L, Zhang F, Zaia J, Linhardt RJ. Top-down approach for the direct characterization of low molecular weight heparins using LC-FT-MS. Anal Chem. 2012;84(20):8822–9.CrossRefGoogle Scholar
  24. 24.
    Gill VL, Aich U, Rao S, Pohl C, Zaia J. Disaccharide analysis of glycosaminoglycans using hydrophilic interaction chromatography and mass spectrometry. Anal Chem. 2013;85(2):1138–45.CrossRefGoogle Scholar
  25. 25.
    Mao Y, Huang Y, Buczek-Thomas JA, Ethen CM, Nugent MA, Wu ZL, et al. A liquid chromatography-mass spectrometry-based approach to characterize the substrate specificity of mammalian heparanase. J Biol Chem. 2014;289(49):34141–51.CrossRefGoogle Scholar
  26. 26.
    Galeotti F, Volpi N. Oligosaccharide mapping of heparinase I-treated heparins by hydrophilic interaction liquid chromatography separation and online fluorescence detection and electrospray ionization-mass spectrometry characterization. J Chromatogr A. 2016;1445:68–79.CrossRefGoogle Scholar
  27. 27.
    Oguma T, Toyoda H, Toida T, Imanari T. Analytical method of chondroitin/dermatan sulfates using high performance liquid chromatography/turbo ionspray ionization mass spectrometry: application to analyses of the tumor tissue sections on glass slides. Biomed Chromatogr. 2001;15(5):356–62.CrossRefGoogle Scholar
  28. 28.
    Saad OM, Leary JA. Compositional analysis and quantification of heparin and heparan sulfate by electrospray ionization ion trap mass spectrometry tion mass spectrometry (ESI-MS) and tandem mass. Anal Chem. 2003;75(13):2985–95.CrossRefGoogle Scholar
  29. 29.
    Barroso B, Didraga M, Bischoff R. Analysis of proteoglycans derived sulphated disaccharides by liquid chromatography/mass spectrometry. J Chromatogr A. 2005;1080(1):43–8.CrossRefGoogle Scholar
  30. 30.
    Saad OM, Ebel H, Uchimura K, Rosen SD, Bertozzi CR, Leary JA. Compositional profiling of heparin/heparan sulfate using mass spectrometry: assay for specificity of a novel extracellular human endosulfatase. Glycobiology. 2005;15(8):818–26.CrossRefGoogle Scholar
  31. 31.
    Zaia J. On-line separations combined with MS for analysis of glycosaminoglycans. Mass Spectrom Rev. 2009;28(2):254–72.CrossRefGoogle Scholar
  32. 32.
    Tomatsu S, Montaño AM, Oguma T, Dung VC, Oikawa H, Gutiérrez ML, et al. Validation of disaccharide compositions derived from dermatan sulfate and heparan sulfate in mucopolysaccharidoses and mucolipidoses II and III by tandem mass spectrometry. Mol Genet Metab. 2010;99(2):124–31.CrossRefGoogle Scholar
  33. 33.
    Li G, Cai C, Li L, Fu L, Chang Y, Toida T, et al. A new method to detect contaminants in heparin using radical depolymerization and liquid chromatography-mass spectrometry. Anal Chem. 2013;86(1):326–30.CrossRefGoogle Scholar
  34. 34.
    Li G, Steppich J, Wang Z, Sun Y, Xue C, Linhardt RJ, et al. Bottom-up low molecular weight heparin analysis using LC-FTMS for extensive characterization. Anal Chem. 2014;86(13):6626–32.CrossRefGoogle Scholar
  35. 35.
    Volpi N, Maccari F. Electrophoretic approaches to the analysis of complex polysaccharides. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;834(1-2):1–13.CrossRefGoogle Scholar
  36. 36.
    Rice KG, Rottink MK, Linhardt RJ. Fractionation of heparin-derived oligosaccharides by gradient polyacrylamide-gel electrophoresis. Biochem J. 1987;244:515–22.CrossRefGoogle Scholar
  37. 37.
    Turnbull JE, Gallagher JT. Oligosaccharide mapping of heparan sulphate by polyacrylamide-gradient-gel electrophoresis and electrotransfer to nylon membrane. Biochem J. 1988;251:597–608.CrossRefGoogle Scholar
  38. 38.
    Byers S, Rozaklis T, Brumfield LK, Ranieri E, Hopwood JJ. Glycosaminoglycan accumulation and excretion in the mucopolysaccharidoses: characterization and basis of a diagnostic test for MPS. Mol Genet Metab. 1998;65(4):282–90.CrossRefGoogle Scholar
  39. 39.
    Vivès RR, Goodger S, Pye DA. Combined strong anion exchange HPLC and PAGE approach for the purification of heparan sulphate oligosaccharides. Biochem Soc. 2001;354:141–7.CrossRefGoogle Scholar
  40. 40.
    Gunay NS, Linhardt RJ. Capillary electrophoretic separation of heparin oligosaccharides under conditions amenable to mass spectrometric detection. J Chromatogr A. 2003;1014:225–33.CrossRefGoogle Scholar
  41. 41.
    Ucakturk E, Cai C, Li L, Li G, Zhang F, Linhardt RJ. Capillary electrophoresis for total glycosaminoglycan analysis. Anal Bioanal Chem. 2014;406(19):4617–26.CrossRefGoogle Scholar
  42. 42.
    Sun X, Lin L, Liu X, Zhang F, Chi L, Xia Q, et al. Capillary electrophoresis-mass spectrometry for the analysis of heparin oligosaccharides and low molecular weight heparin. Anal Chem. 2016;88:1937–43.CrossRefGoogle Scholar
  43. 43.
    Laremore TN, Ly M, Solakyildirim K, Zagorevski DV, Linhardt RJ. High-resolution preparative separation of glycosaminoglycan oligosaccharides by polyacrylamide gel electrophoresis. Anal Biochem. 2010;401(2):236–41.CrossRefGoogle Scholar
  44. 44.
    Miller MJC, Costello CE, Malmström A, Zaia J. A tandem mass spectrometric approach to determination of chondroitin/dermatan sulfate oligosaccharide glycoforms. Glycobiology. 2006;16(6):502–13.CrossRefGoogle Scholar
  45. 45.
    Farndale R, Buttle D, Barrett A. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta Gen Subj. 1986;883:173–7.CrossRefGoogle Scholar
  46. 46.
    Linhardt RJ. Analysis of glycosaminoglycans with polysaccharide lyases. Curr Protoc Mol Biol. 1999;17.13B:1–16.Google Scholar
  47. 47.
    Trowbridge JM, Gallo RL. Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology. 2002;12(9):117R–25.CrossRefGoogle Scholar
  48. 48.
    Kusche-Gullberg M, Kjellén L. Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol. 2003;13(5):605–11.CrossRefGoogle Scholar
  49. 49.
    Laremore TN, Leach FE, Amster IJ, Linhardt RJ. Electrospray ionization Fourier transform mass spectrometric analysis of intact bikunin glycosaminoglycan from normal human plasma. Int J Mass Spectrom. 2011;305(2-3):109–15.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pierre-Edouard Bodet
    • 1
    • 2
  • Isabelle Salard
    • 1
    • 2
  • Cédric Przybylski
    • 1
    • 2
  • Florence Gonnet
    • 1
    • 2
  • Cathy Gomila
    • 3
  • Jèrôme Ausseil
    • 3
  • Régis Daniel
    • 1
    • 2
  1. 1.CNRS UMR 8587, Laboratoire Analyse et Modélisation pour la Biologie et l’EnvironnementEvryFrance
  2. 2.Université Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’EnvironnementEvryFrance
  3. 3.INSERM U1088, Laboratoire de Biochimie Spécialisée, Centre de Biologie HumaineCHU SudAmiens CedexFrance

Personalised recommendations