Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 4, pp 1093–1100 | Cite as

A plasmonic ELISA for the naked-eye detection of chromium ions in water samples

  • Cuize Yao
  • Shiting Yu
  • Xiuqing Li
  • Ze Wu
  • Jiajie Liang
  • Qiangqiang Fu
  • Wei Xiao
  • Tianjiu Jiang
  • Yong Tang
Research Paper

Abstract

Here, we describe the development of a triangular silver nanoprism (AgNPR) etching-based plasmonic ELISA for the colorimetric determination of Cr(III) levels in environmental water samples. This involved the creation of a novel signal generation system (substrate reaction solution) for a competitive ELISA in which hydrogen peroxide (H2O2) is used to etch triangular AgNPRs, inducing a change in color. This is achieved by controlling the H2O2 concentration that remains after degradation by catalase, which is conjugated to the secondary antibody of the ELISA. Because the degree of color change and the shift in the absorption spectrum of the substrate reaction solution are closely correlated with the Cr(III) concentration, this plasmonic ELISA can be used not only for the quantification of Cr(III) concentrations ranging from 3.13 to 50 ng/mL, with a limit of detection (LOD) of 3.13 ng/mL, but also for the visual detection (indicated by a color change from blue to mauve) of Cr(III) with a sensitivity of 6.25 ng/mL by the naked eye. Therefore, the plasmonic ELISA developed in this work represents a new strategy for heavy metal ion detection and has high potential applicability in resource-constrained areas.

Graphical Abstract

Schematic diagram of triangular silver nanoprism etching-based signal generation system

Keywords

Triangular silver nanoprism Colorimetric Plasmonic ELISA Chromium ion 

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2016YFD0500600), the Technology Research Program of Guangzhou City (201508020100), the Technology Research Program of Guangdong Province (2013B010404027), and the Guangdong Innovative and Entrepreneurial Research Team Program (201301S0105240297). This manuscript was edited and proof-read by NPG Language Editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_28_MOESM1_ESM.pdf (189 kb)
ESM 1 (PDF 188 kb)

References

  1. 1.
    Rubio C, González-Iglesias T, Revert C, Reguera JI, Gutiérrez AJ, Hardisson A. Lead dietary intake in a Spanish population (Canary Islands). J Agric Food Chem. 2005;53(16):6543–9.CrossRefGoogle Scholar
  2. 2.
    Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68(1):167–82.CrossRefGoogle Scholar
  3. 3.
    Li YT, Becquer T, Dai J, Quantin C, Benedetti MF. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils. Environ Pollut. 2009;157(4):1249–57.CrossRefGoogle Scholar
  4. 4.
    Liu X, Xiang JJ, Tang Y, Zhang XL, Fu QQ, Zou JH, et al. Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples. Anal Chim Acta. 2012;745:99–105.CrossRefGoogle Scholar
  5. 5.
    Bere T, Chia MA, Tundisi JG. Effects of Cr III and Pb on the bioaccumulation and toxicity of Cd in tropical periphyton communities: implications of pulsed metal exposures. Environ Pollut. 2012;163:184–91.Google Scholar
  6. 6.
    Shi J, Chen H, Arocena JM, Whitcombe T, Thring RW, Memiaghe JN. Elemental sulfur amendment decreases bio-available Cr-VI in soils impacted by leather tanneries. Environ Pollut. 2016;212:57–64.CrossRefGoogle Scholar
  7. 7.
    Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C. A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol. 1999;29(1):1–46.CrossRefGoogle Scholar
  8. 8.
    Kocaoba S, Akcin G. Removal and recovery of chromium and chromium speciation with MINTEQA2. Talanta. 2002;57(1):23–30.CrossRefGoogle Scholar
  9. 9.
    Farag AM, May T, Marty GD, Easton M, Harper DD, Little EE, et al. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha). Aquat Toxicol. 2006;76(3):246–57.Google Scholar
  10. 10.
    WHO. The World Health Organization Quality of Life assessment (WHOQOL): position paper from the World Health Organization. Soc Sci Med. 1995;41(10):1403–9.Google Scholar
  11. 11.
    Burlingame AL, Boyd RK, Gaskell SJ. Mass spectrometry. Anal Chem. 1996;68(12):599–652.CrossRefGoogle Scholar
  12. 12.
    Li YR, Pradhan NK, Foley R, Low GKC. Selective determination of airborne hexavalent chromium using inductively coupled plasma mass spectrometry. Talanta. 2002;57(6):1143–53.CrossRefGoogle Scholar
  13. 13.
    Pressman MAS, Aldstadt JH. A comparative study of diffusion samplers for the determination of hexavalent chromium by sequential injection spectrophotometry. Microchem J. 2003;74(1):47–57.CrossRefGoogle Scholar
  14. 14.
    Jackson KW, Mahmood TM. Atomic absorption, atomic emission, and flame emission spectrometry. Anal Chem. 1994;66(12):252R–79R.CrossRefGoogle Scholar
  15. 15.
    Zhu XS, Hu B, Jiang ZC, Li MF. Cloud point extraction for speciation of chromium in water samples by electrothermal atomic absorption spectrometry. Water Res. 2005;39(4):589–95.CrossRefGoogle Scholar
  16. 16.
    Yuan D-h, Guo X-j, Wen L, He L-s, Wang J-g, Li J-q. Detection of copper (II) and cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis. Environ Pollut. 2015;204:152–60.Google Scholar
  17. 17.
    Liu JW, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc. 2003;125(22):6642–3.CrossRefGoogle Scholar
  18. 18.
    Wang ZD, Lee JH, Lu Y. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater. 2008;20(17):3263–7.CrossRefGoogle Scholar
  19. 19.
    Wu YG, Zhan SS, Wang LM, Zhou P. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst. 2014;139(6):1550–61.CrossRefGoogle Scholar
  20. 20.
    Xiang JJ, Zhai YF, Tang Y, Wang H, Liu B, Guo CW. A competitive indirect enzyme-linked immunoassay for lead ion measurement using mAbs against the lead–DTPA complex. Environ Pollut. 2010;158(5):1376–80.Google Scholar
  21. 21.
    Zhou Y, Tian XL, Li YG, Pan FG, Zhang YY, Zhang JH, et al. An enhanced ELISA based on modified colloidal gold nanoparticles for the detection of Pb (II). Biosens Bioelectron. 2011;26(8):3700–4.CrossRefGoogle Scholar
  22. 22.
    Fu QQ, Tang Y, Shi CY, Zhang XL, Xiang JJ, Liu X. A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium. Biosens Bioelectron. 2013;49:399–402.CrossRefGoogle Scholar
  23. 23.
    Liang JJ, Liu HW, Lan CF, Fu QQ, Huang CH, Luo Z, et al. Silver nanoparticle enhanced Raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium. Nanotechnology. 2014;25(49):495501.CrossRefGoogle Scholar
  24. 24.
    Tang Y, Zhai Y-F, Xiang J-J, Wang H, Liu B, Guo C-W. Colloidal gold probe-based immunochromatographic assay for the rapid detection of lead ions in water samples. Environ Pollut. 2010;158(6):2074–7.CrossRefGoogle Scholar
  25. 25.
    Tokel O, Inci F, Demirci U. Advances in plasmonic technologies for point of care applications. Chem Rev. 2014;114(11):5728–52.CrossRefGoogle Scholar
  26. 26.
    Wang J, Lu J, Su S, Gao J, Huang Q, Wang L, et al. Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles. Biosens Bioelectron. 2015;65:171–5.CrossRefGoogle Scholar
  27. 27.
    Wei L, Wang X, Li C, Li X, Yin Y, Li G. Colorimetric assay for protein detection based on “nano-pumpkin” induced aggregation of peptide-decorated gold nanoparticles. Biosens Bioelectron. 2015;71:348–52.CrossRefGoogle Scholar
  28. 28.
    Zhao L, Jin Y, Yan ZW, Liu YY, Zhu HJ. Novel, highly selective detection of Cr(III) in aqueous solution based on a gold nanoparticles colorimetric assay and its application for determining Cr(VI). Anal Chim Acta. 2012;731:75–81.Google Scholar
  29. 29.
    Ye YJ, Liu HL, Yang LB, Liu JH. Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles. Nanoscale. 2012;4(20):6442–8.CrossRefGoogle Scholar
  30. 30.
    Chen GH, Chen WY, Yen YC, Wang CW, Chang HT, Chen CF. Detection of mercury (II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem. 2014;86(14):6843–9.CrossRefGoogle Scholar
  31. 31.
    Cecchin D, de La Rica R, Bain RES, Finnis MW, Stevens MM, Battaglia G. Plasmonic ELISA for the detection of gp120 at ultralow concentrations with the naked eye. Nanoscale. 2014;6(16):9559–62.CrossRefGoogle Scholar
  32. 32.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078–81.CrossRefGoogle Scholar
  33. 33.
    De La Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012;7(12):821–4.CrossRefGoogle Scholar
  34. 34.
    Fu Q, Wu Z, Xu F, Li X, Yao C, Xu M, et al. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip. 2016;16(10):1927–33.CrossRefGoogle Scholar
  35. 35.
    Zhang Q, Li N, Goebl J, Lu ZD, Yin YD. A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc. 2011;133(46):18931–9.Google Scholar
  36. 36.
    Liang JJ, Yao CZ, Li XQ, Wu Z, Huang CH, Fu QQ, et al. Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens Bioelectron. 2015;69:128–34.CrossRefGoogle Scholar
  37. 37.
    Xia YS, Ye JJ, Tan KH, Wang JJ, Yang G. Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism–glucose oxidase system. Anal Chem. 2013;85(13):6241–7.CrossRefGoogle Scholar
  38. 38.
    Ali I, Aboul-Enein HY. Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere. 2002;48(3):275–8.CrossRefGoogle Scholar
  39. 39.
    Chen M, Cai HH, Yang F, Lin D, Yang PH, Cai J. Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles. Spectrochim Acta A. 2013;118C(2):776–81.Google Scholar
  40. 40.
    Yu S, Xiao W, Fu Q, Wu Z, Yao C, Shen H, et al. A portable chromium ion detection system based on a smartphone readout device. Anal Methods. 2016.Google Scholar
  41. 41.
    Leśniewska B, Trzonkowska L, Zambrzycka E, Godlewska-Żyłkiewicz B. Multi-commutation flow system with on-line solid phase extraction exploiting the ion-imprinted polymer and FAAS detection for chromium speciation analysis in sewage samples. Anal Methods. 2014;7(4):1517–26.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cuize Yao
    • 1
    • 2
  • Shiting Yu
    • 1
  • Xiuqing Li
    • 1
  • Ze Wu
    • 1
  • Jiajie Liang
    • 1
  • Qiangqiang Fu
    • 1
  • Wei Xiao
    • 1
  • Tianjiu Jiang
    • 3
  • Yong Tang
    • 1
  1. 1.Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody EngineeringJinan UniversityGuangzhouChina
  2. 2.Medical Genetic CentreGuangdong Women and Children HospitalGuangzhouChina
  3. 3.Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education InstituteJinan UniversityGuangzhouChina

Personalised recommendations