Analytical and Bioanalytical Chemistry

, Volume 408, Issue 6, pp 1565–1571 | Cite as

Evidence for ferritin as dominant iron-bearing species in the rhizobacterium Azospirillum brasilense Sp7 provided by low-temperature/in-field Mössbauer spectroscopy

  • Krisztina Kovács
  • Alexander A. KamnevEmail author
  • Jiří Pechoušek
  • Anna V. Tugarova
  • Ernő Kuzmann
  • Libor Machala
  • Radek Zbořil
  • Zoltán Homonnay
  • Károly Lázár
Research Paper


For the ubiquitous diazotrophic rhizobacterium Azospirillum brasilense, which has been attracting the attention of researchers worldwide for the last 35 years owing to its significant agrobiotechnological and phytostimulating potential, the data on iron acquisition and its chemical speciation in cells are scarce. In this work, for the first time for azospirilla, low-temperature (at 80 K, 5 K, as well as at 2 K without and with an external magnetic field of 5 T) transmission Mössbauer spectroscopic studies were performed for lyophilised biomass of A. brasilense (wild-type strain Sp7 grown with 57FeIII nitrilotriacetate complex as the sole source of iron) to enable quantitative chemical speciation analysis of the intracellular iron. In the Mössbauer spectrum at 80 K, a broadened quadrupole doublet of high-spin iron(III) was observed with a few percent of a high-spin iron(II) contribution. In the spectrum measured at 5 K, a dominant magnetically split component appeared with the parameters typical of ferritin species from other bacteria, together with a quadrupole doublet of a superparamagnetic iron(III) component and a similarly small contribution from the high-spin iron(II) component. The Mössbauer spectra recorded at 2 K (with or without a 5 T external field) confirmed the assignment of ferritin species. About 20 % of total Fe in the dry cells of A. brasilense strain Sp7 were present in iron(III) forms superparamagnetic at both 5 and 2 K, i.e. either different from ferritin cores or as ferritin components with very small particle sizes.

Graphical abstract

Low-temperature Mössbauer spectroscopic data for lyophilised biomass of the rhizobacterium Azospirillum brasilense Sp7 provide quantitative information on various cellular FeIII and FeII chemical species


Iron metabolism Bacterial ferritin Azospirillum brasilense 57Fe transmission Mössbauer spectroscopy 



This study was supported in parts by Project LO1305 of the Ministry of Education, Youth and Sports of the Czech Republic and by The Russian Foundation for Basic Research (Grant No. 13-04-01538-a), as well as under the Agreement on Scientific Cooperation between the Russian and Hungarian Academies of Sciences for 2011–2013 (Projects Nos. 28 and 29).

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


  1. 1.
    Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil. 2014;378:1–33.CrossRefGoogle Scholar
  2. 2.
    Wisniewski-Dyé F, Drogue B, Borland S, Prigent-Combaret C. Azospirillum-plant interaction: from root colonisation to plant growth promotion. In: Belén Rodelas González M, González-López J, editors. Beneficial plant-microbial interactions: ecology and applications, vol. Chapter 11. Boca Raton: CRC Press; 2013. p. 237–69.CrossRefGoogle Scholar
  3. 3.
    Bashan Y, de-Bashan LE. How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron. 2010;108:77–136.CrossRefGoogle Scholar
  4. 4.
    Veresoglou SD, Menexes G. Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of science from 1981 to 2008. Plant Soil. 2010;337:469–80.CrossRefGoogle Scholar
  5. 5.
    Rothballer M, Schmid M, Hartmann A. In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis. 2003;34:261–79.Google Scholar
  6. 6.
    Bashan Y, Holguin G, de-Bashan LE. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol. 2004;50:521–77.CrossRefGoogle Scholar
  7. 7.
    Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Kulikov LA, Perfiliev YuD, et al. Instrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques. Anal Chim Acta. 2006;573–574:445–52.CrossRefGoogle Scholar
  8. 8.
    Mulyukin AL, Suzina NE, Pogorelova AYu, Antonyuk LP, Duda VI, El’-Registan GI. Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense. Microbiology. 2009;78:33–41.CrossRefGoogle Scholar
  9. 9.
    Pogorelova AYu, Mulyukin AL, Antonyuk LP, Galchenko VF, El’-Registan GI. Phenotypic variability in Azospirillum brasilense strains Sp7 and Sp245: association with dormancy and characteristics of the variants. Microbiology. 2009;78:559–68.CrossRefGoogle Scholar
  10. 10.
    Kamnev AA, Tugarova AV, Tarantilis PA, Gardiner PHE, Polissiou MG. Comparing poly-3-hydroxybutyrate accumulation in Azospirillum brasilense strains Sp7 and Sp245: the effects of copper(II). Appl Soil Ecol. 2012;61:213–6.CrossRefGoogle Scholar
  11. 11.
    Kamnev AA, Tugarova AV, Kovács K, Kuzmann E, Biró B, Tarantilis PA, et al. Emission (57Co) Mössbauer spectroscopy as a tool for probing speciation and metabolic transformations of cobalt(II) in bacterial cells. Anal Bioanal Chem. 2013;405:1921–7.CrossRefGoogle Scholar
  12. 12.
    Cassán FD, Okon Y, Creus CM, editors. Handbook for Azospirillum. Technical issues and protocols. Basel: Springer; 2015. doi: 10.1007/978-3-319-06542-7.Google Scholar
  13. 13.
    Barton LL, Johnson GV, Bishop YM. The metabolism of iron by nitrogen-fixing rhizospheric bacteria. In: Barton LL, Abadia J, editors. Iron nutrition in plants and rhizospheric microorganisms, vol. Chapter 9. Dordrecht: Springer; 2006. p. 199–214.CrossRefGoogle Scholar
  14. 14.
    Bachhawat AK, Ghosh S. Iron transport in Azospirillum brasilense: role of the siderophore spirilobactin. J Gen Microbiol. 1987;133:1759–65.Google Scholar
  15. 15.
    Mori E, Fulchieri M, Indorato C, Fani R, Bazzicalupo M. Cloning, nucleotide sequencing, and expression of the Azospirillum brasilense lon gene: involvement in iron uptake. J Bacteriol. 1996;178(12):3440–6.Google Scholar
  16. 16.
    Kamnev AA, Renou-Gonnord M-F, Antonyuk LP, Colina M, Chernyshev AV, Frolov I, et al. Spectroscopic characterization of the uptake of essential and xenobiotic metal cations in cells of the soil bacterium Azospirillum brasilense. IUBMB Life. 1997;41:123–30. doi: 10.1080/15216549700201121.CrossRefGoogle Scholar
  17. 17.
    Kamnev AA, Tugarova AV, Kovács K, Kuzmann E, Homonnay Z, Kulikov LA, et al. Mössbauer spectroscopic study of iron and cobalt metabolic transformations in cells of the bacterium Azospirillum brasilense Sp7. Bull Russ Acad Sci Phys. 2015;79(8):1036–40. doi: 10.3103/S1062873815080110.CrossRefGoogle Scholar
  18. 18.
    Kamnev AA, Tugarova AV, Kovács K, Bíró B, Homonnay Z, Kuzmann E. Mössbauer spectroscopic study of 57Fe metabolic transformations in the rhizobacterium Azospirillum brasilense Sp245. Hyperfine Interact. 2014;226:415–9.CrossRefGoogle Scholar
  19. 19.
    Alenkina IV, Oshtrakh MI, Tugarova AV, Biró B, Semionkin VA, Kamnev AA. Study of the rhizobacterium Azospirillum brasilense Sp245 using Mössbauer spectroscopy with a high velocity resolution: Implication for the analysis of ferritin-like iron cores. J Mol Struct. 2014;1073:181–6.CrossRefGoogle Scholar
  20. 20.
    Honarmand Ebrahimi K, Hagedoorn P-L, Hagen WR. Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin. Chem Rev. 2015;115:295–326.CrossRefGoogle Scholar
  21. 21.
    Jutz G, van Rijn P, Miranda BS, Böker A. Ferritin: a versatile building block for bionanotechnology. Chem Rev. 2015;115:1653–701.CrossRefGoogle Scholar
  22. 22.
    Kamnev AA, Sadovnikova JN, Tarantilis PA, Polissiou MG, Antonyuk LP. Responses of Azospirillum brasilense to nitrogen deficiency and to wheat lectin: a diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic study. Microb Ecol. 2008;56:615–24.CrossRefGoogle Scholar
  23. 23.
    Pechoušek J, Jančík D, Frydrych J, Navařík J, Novák P. Setup of Mössbauer spectrometers at RCPTM. AIP Conf Proc. 2012;1489:186–93. doi: 10.1063/1.4759489.CrossRefGoogle Scholar
  24. 24.
    Pechoušek J, Prochazka R, Jančík D, Frydrych J, Mashlan M. Universal LabVIEW-powered Mössbauer spectrometer based on USB PCI or PXI devices. J Phys Conf Ser. 2010;217:012006. doi: 10.1088/1742-6596/217/1/012006.CrossRefGoogle Scholar
  25. 25.
    Klencsár Z, Kuzmann E, Vértes A. User-friendly software for Mössbauer spectrum analysis. J Radioanal Nucl Chem. 1996;210:105–18.CrossRefGoogle Scholar
  26. 26.
    Naumann D. Infrared spectroscopy in microbiology. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2000. p. 102–31.Google Scholar
  27. 27.
    Hartnett A, Böttger LH, Matzanke BF, Carrano CJ. A multidisciplinary study of iron transport and storage in the marine green alga Tetraselmis suecica. J Inorg Biochem. 2012;116:188–94.CrossRefGoogle Scholar
  28. 28.
    Winkler H, Meyer W, Trautwein AX, Matzanke BF. Mössbauer and EXAFS studies of bacterioferritin from Streptomyces olivaceus. Hyperfine Interact. 1994;91:841–6.CrossRefGoogle Scholar
  29. 29.
    Matzanke BF, Bill E, Müller GI, Winkelmann G, Trautwein AX. In vivo Mössbauer spectroscopy of iron uptake and ferrometabolism in Escherichia coli. Hyperfine Interact. 1989;47:311–27.CrossRefGoogle Scholar
  30. 30.
    Andrews SC. Iron storage in bacteria. Adv Microb Physiol. 1998;40:281–351.CrossRefGoogle Scholar
  31. 31.
    Gálvez N, Fernández B, Sánchez P, Cuesta R, Ceolín M, Clemente-León M, et al. Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents. J Am Chem Soc. 2008;130(25):8062–8.CrossRefGoogle Scholar
  32. 32.
    Pan Y-H, Sader K, Powell JJ, Bleloch A, Gass M, Trinick J, et al. 3D morphology of the human hepatic ferritin mineral core: new evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images. J Struct Biol. 2009;166(1):22–31.CrossRefGoogle Scholar
  33. 33.
    Papaefthymiou GC. The Mössbauer and magnetic properties of ferritin cores. Biochim Biophys Acta. 1800;2010:886–97.Google Scholar
  34. 34.
    Lopez-Castro JD, Delgado JJ, Perez-Omil JA, Gálvez N, Cuesta R, Watt RK, et al. A new approach to the ferritin iron core growth: influence of the H/L ratio on the core shape. Dalton Trans. 2012;41(4):1320–4.CrossRefGoogle Scholar
  35. 35.
    Alenkina IV, Oshtrakh MI, Klepova YuV, Dubiel SM, Sadovnikov NV, Semionkin VA. Comparative study of the iron cores in human liver ferritin, its pharmaceutical models and ferritin in chicken liver and spleen tissues using Mössbauer spectroscopy with a high velocity resolution. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2013;100:88–93.CrossRefGoogle Scholar
  36. 36.
    Kamnev AA, Kovács K, Alenkina IV, Oshtrakh MI. Mössbauer spectroscopy in biological and biomedical research. In: Sharma VK, Klingelhöfer G, Nishida T, editors. Mössbauer spectroscopy: applications in chemistry, biology, and nanotechnology, vol. Chapter 13. N.Y: Wiley; 2013. p. 272–91.CrossRefGoogle Scholar
  37. 37.
    Alenkina IV, Oshtrakh MI, Klencsár Z, Kuzmann E, Chukin AV, Semionkin VA. 57Fe Mössbauer spectroscopy and electron paramagnetic resonance studies of human liver ferritin, Ferrum Lek and Maltofer®. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2014;130:24–36.CrossRefGoogle Scholar
  38. 38.
    Pankhurst QA, Pollard RJ. Structural and magnetic properties of ferrihydrite. Clays Clay Miner. 1992;40(3):268–72. doi: 10.1346/CCMN.1992.0400303.CrossRefGoogle Scholar
  39. 39.
    Coey JMD, Readman PW. Characterisation and magnetic properties of natural ferric gel. Earth Planet Sci Lett. 1973;21(1):45–51. doi: 10.1016/0012-821X(73)90224-0.CrossRefGoogle Scholar
  40. 40.
    St Pierre TG, Bell SH, Dickson DPE, Mann S, Webb J, Moore GR, et al. Mössbauer spectroscopic studies of the cores of human, limpet and bacterial ferritins. Biochim Biophys Acta Protein Struct Mol Enzymol. 1986;870(1):127–34.CrossRefGoogle Scholar
  41. 41.
    Cornell RM, Schwertmann U. The iron oxides: structure, properties, reactions, occurences and uses. 2nd ed. Weinheim: Wiley-VCH; 2003.CrossRefGoogle Scholar
  42. 42.
    Oshtrakh MI, Semionkin VA. Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2013;100:78–87.CrossRefGoogle Scholar
  43. 43.
    Berquó TS, Erbs JJ, Lindquist A, Penn RL, Banerjee SK. Effects of magnetic interactions in antiferromagnetic ferrihydrite particles. J Phys Condens Matter. 2009;21(17):176005. doi: 10.1088/0953-8984/21/17/176005.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Krisztina Kovács
    • 1
  • Alexander A. Kamnev
    • 2
    Email author
  • Jiří Pechoušek
    • 3
  • Anna V. Tugarova
    • 2
  • Ernő Kuzmann
    • 1
  • Libor Machala
    • 3
  • Radek Zbořil
    • 3
  • Zoltán Homonnay
    • 1
  • Károly Lázár
    • 4
  1. 1.Institute of ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  3. 3.Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic
  4. 4.Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations