Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 5, pp 1487–1496 | Cite as

In vivo and in situ synchrotron radiation-based μ-XRF reveals elemental distributions during the early attachment phase of barnacle larvae and juvenile barnacles

  • Tobias Senkbeil
  • Tawheed Mohamed
  • Rolf Simon
  • David Batchelor
  • Alessio Di Fino
  • Nick Aldred
  • Anthony S. Clare
  • Axel Rosenhahn
Research Paper

Abstract

Barnacles are able to establish stable surface contacts and adhere underwater. While the composition of adult barnacle cement has been intensively studied, far less is known about the composition of the cement of the settlement-stage cypris larva. The main challenge in studying the adhesives used by these larvae is the small quantity of material available for analysis, being on the order of nanograms. In this work, we applied, for the first time, synchrotron radiation-based μ-X-ray fluorescence analysis (SR-μ-XRF) for in vivo and in situ analysis of young barnacles and barnacle cyprids. To obtain biologically relevant information relating to the body tissues, adhesives, and shell of the organisms, an in situ sample environment was developed to allow direct microprobe investigation of hydrated specimens without pretreatment of the samples. In 8-day-old juvenile barnacles (Balanus improvisus), the junctions between the six plates forming the shell wall showed elevated concentrations of calcium, potassium, bromine, strontium, and manganese. Confocal measurements allowed elemental characterization of the adhesive interface of recently attached cyprids (Balanus amphitrite), and substantiated the accumulation of bromine both at the point of initial attachment as well as within the cyprid carapace. In situ measurements of the cyprid cement established the presence of bromine, chlorine, iodine, sulfur, copper, iron, zinc, selenium, and nickel for both species. The previously unrecognized presence of bromine, iron, and selenium in the cyprid permanent adhesive will hopefully inspire further biochemical investigations of the function of these substances.

Keywords

Barnacles Biological adhesive Elemental imaging Marine biofouling Synchrotron μ-XRF 

Notes

Acknowledgments

The authors acknowledge the Synchrotron Light Source ANKA for provision of beamtime at the FLUO beamline and the ANKA staff for excellent support during the beamtime. This work was funded by the Virtual Institute VH-VI-403 of the Helmholtz Association, Office of Naval Research grants N00014-12-1-0498 and N00014-15-1-2324, and the 7th framework International Marie-Curie Training network SeaCoat (grant 237997). N. Aldred and A. S. Clare acknowledge funding support from Office of Naval Research grants N00014-08-1-1240 to A.S.C. and N00014-13-1-0633 to A.S.C. and N.A.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2015_9253_MOESM1_ESM.pdf (484 kb)
ESM 1 (PDF 483 kb)

References

  1. 1.
    Callow JA, Callow ME. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun. 2011;2:244.CrossRefGoogle Scholar
  2. 2.
    Kamino K. In: Thomopoulos S, Birman V, Genin GM, editors. Structural interfaces and attachments in biology. New York: Springer; 2013.Google Scholar
  3. 3.
    Kamino K. In: Smith AM, Callow JA, editors. Biological adhesives. Berlin: Springer; 2006.Google Scholar
  4. 4.
    Barlow DE, Dickinson GH, Orihuela B, Rittschof D, Wahl KJ. In situ ATR–FTIR characterization of primary cement interfaces of the barnacle Balanus amphitrite. Biofouling. 2009;25:359–66.CrossRefGoogle Scholar
  5. 5.
    Barlow DE, Dickinson GH, Orihuela B, Kulp III JL, Rittschof D, Wahl KJ. Characterization of the adhesive plaque of the barnacle Balanus amphitrite: Amyloid-like nanofibrils are a major component. Langmuir. 2010;26:6549–56.CrossRefGoogle Scholar
  6. 6.
    Kamino K. Molecular design of barnacle cement in comparison with those of mussel and tubeworm. J Adhes. 2010;86:96–110.CrossRefGoogle Scholar
  7. 7.
    Dougherty WJ. Zinc metalloprotease activity in the cement precursor secretion of the barnacle Chthamalus fragilis Darwin. Tissue Cell. 1996;28:439–47.CrossRefGoogle Scholar
  8. 8.
    Dougherty WJ. Carboxypeptidase activity of the zinc metalloprotease in the cement precursor secretion of the barnacle Chthamalus fragilis Darwin. Comp Biochem Phys B. 1997;117:565–70.CrossRefGoogle Scholar
  9. 9.
    Dickinson GH, Vega IE, Wahl KJ, Orihuela B, Beyley V, Rodriguez EN, et al. Barnacle cement: a polymerization model based on evolutionary concepts. J Exp Biol. 2009;212:3499–510.CrossRefGoogle Scholar
  10. 10.
    Kamino K. Absence of cross-linking via trans-glutaminase in barnacle cement and redefinition of the cement. Biofouling. 2010;26:755–60.CrossRefGoogle Scholar
  11. 11.
    Aldred N, Clare AS. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings. Biofouling. 2008;24:351–63.CrossRefGoogle Scholar
  12. 12.
    Aldred N, Høeg JT, Maruzzo D, Clare AS. Analysis of the behaviours mediating barnacle cyprid reversible adhesion. PLoS ONE. 2013;8:e68085.CrossRefGoogle Scholar
  13. 13.
    Petrone L, Aldred N, Emami K, Enander K, Ederth T, Clare AS. Chemistry-specific surface adsorption of the barnacle settlement-inducing protein complex. Interf Focus. 2015;5:20140047.CrossRefGoogle Scholar
  14. 14.
    Maruzzo D, Aldred N, Clare AS, Høeg JT. Metamorphosis in the cirripede crustacean Balanus amphitrite. PLoS ONE. 2012;7:e37408.CrossRefGoogle Scholar
  15. 15.
    Gohad NV, Aldred N, Hartshorn CM, Lee YJ, Cicerone MT, Orihuela B, et al. Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nat Commun. 2014;5:4414.CrossRefGoogle Scholar
  16. 16.
    Walker G. A study of the cement apparatus of the cypris larva of the barnacle Balanus balanoides. Mar Biol. 1971;9:205–12.CrossRefGoogle Scholar
  17. 17.
    Walker G. The adhesion of barnacles. J Adhes. 1981;12:51–8.CrossRefGoogle Scholar
  18. 18.
    Aldred N, Gohad NV, Petrone L, Orihuela B, Liedberg B, Ederth T, et al. Confocal microscopy-based goniometry of barnacle cyprid permanent adhesive. J Exp Biol. 2013;216:1969–72.CrossRefGoogle Scholar
  19. 19.
    Phang IY, Aldred N, Clare AS, Callow JA, Vancso GJ. An in situ study of the nanomechanical properties of barnacle (Balanus amphitrite) cyprid cement using atomic force microscopy (AFM). Biofouling. 2006;22:245–50.CrossRefGoogle Scholar
  20. 20.
    Schmidt M, Cavaco A, Gierlinger N, Aldred N, Fratzl P, Grunze M, et al. In situ imaging of barnacle (Balanus amphitrite) cyprid cement using confocal Raman microscopy. J Adhes. 2009;85:139–51.CrossRefGoogle Scholar
  21. 21.
    Di Fino A, Petrone L, Aldred N, Ederth T, Liedberg B, Clare AS. Correlation between surface chemistry and settlement behaviour in barnacle cyprids (Balanus improvisus). Biofouling. 2014;30:143–52.CrossRefGoogle Scholar
  22. 22.
    Simon R, Buth G, Hagelstein M. The X-ray-fluorescence facility at ANKA, Karlsruhe: Minimum detection limits and micro probe capabilities. Nucl Instrum Meth B. 2003;199:554–8.CrossRefGoogle Scholar
  23. 23.
    Solé VA, Papillon E, Cotte M, Walter P, Susini J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta B. 2007;62:63–8.CrossRefGoogle Scholar
  24. 24.
    Fernández MS, Vergara I, Oyarzún A, Arias JI, Rodríguez R, Wiff JP, et al. Extracellular matrix molecules involved in barnacle shell mineralization. Mater Res Soc Symp. 2002;724:3–9.Google Scholar
  25. 25.
    Hockett D, Ingram P, LeFurgey A. Strontium and manganese uptake in the barnacle shell: electron probe microanalysis imaging to attain fine temporal resolution of biomineralization activity. Mar Environ Res. 1997;43:131–43.CrossRefGoogle Scholar
  26. 26.
    Gohad NV, Dickinson GH, Orihuela B, Rittschof D, Mount AS. Visualization of putative ion-transporting epithelia in Amphibalanus amphitrite using correlative microscopy: Potential function in osmoregulation and biomineralization. J Exp Mar Biol Ecol. 2009;380:88–98.CrossRefGoogle Scholar
  27. 27.
    Nousek NA. Shell formation and calcium transport in the barnacle Chthamalus fragilis. Tissue Cell. 1984;16:433–42.CrossRefGoogle Scholar
  28. 28.
    Bernard FJ, Lane CE. Absorption and excretion of copper ion during settlement and metamorphosis of the barnacle Balanus amphitrite niveus. Biol Bull. 1961;121:438–48.CrossRefGoogle Scholar
  29. 29.
    Walker G. “Copper” granules in the barnacle Balanus balanoides. Mar Biol. 1977;39:343–9.CrossRefGoogle Scholar
  30. 30.
    Walker G, Rainbow PS, Foster P, Crisp DJ. Barnacles: possible indicators of zinc pollution? Mar Biol. 1975;30:57–65.CrossRefGoogle Scholar
  31. 31.
    Reis PA, Salgado MA, Vasconcelos V. Barnacles as biomonitors of metal contamination in coastal waters. Estuar Coast Shelf Sci. 2011;93:269–78.CrossRefGoogle Scholar
  32. 32.
    Holland DL, Walker G. The biochemical composition of the cypris larva of the barnacle Balanus balanoides L. J Conseil. 1975;36:162–5.CrossRefGoogle Scholar
  33. 33.
    Barnes H, Klepal W, Mitchell BD. The organic and inorganic composition of some cirripede shells. J Exp Mar Biol Ecol. 1976;21:119–27.CrossRefGoogle Scholar
  34. 34.
    Shigeno Y, Kondo K, Takemoto K. Functional monomers and polymers, 85. On the adsorption of bromine onto chitosan. Angew Makromol Chem. 1980;90:211–5.CrossRefGoogle Scholar
  35. 35.
    Takahashi Y. Binding properties of alginic acid and chitin. J Incl Phenom. 1987;5:525–34.CrossRefGoogle Scholar
  36. 36.
    Ehrlich H, Simon P, Carrillo-Cabrera W, Bazhenov VV, Botting JP, Ilan M, et al. Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges. Chem Mater. 2010;22:1462–71.CrossRefGoogle Scholar
  37. 37.
    Walley LJ, Rees EIS. Studies on the larval structure and metamorphosis of Balanus balanoides (L.). Philos T Roy Soc B. 1969;256:237–80.CrossRefGoogle Scholar
  38. 38.
    Aldred N, Phang IY, Conlan SL, Clare AS, Vancso GJ. The effects of a serine protease, Alcalase, on the adhesives of barnacle cyprids (Balanus amphitrite). Biofouling. 2008;24:97–107.CrossRefGoogle Scholar
  39. 39.
    Burden DK, Barlow DE, Spillmann CM, Orihuela B, Rittschof D, Everett R, et al. Barnacle Balanus amphitrite adheres by a stepwise cementing process. Langmuir. 2012;28:13364–72.CrossRefGoogle Scholar
  40. 40.
    Burden DK, Spillmann CM, Everett RK, Barlow DE, Orihuela B, Deschamps JR, et al. Growth and development of the barnacle Amphibalanus amphitrite: time and spatially resolved structure and chemistry of the base plate. Biofouling. 2014;30:799–812.CrossRefGoogle Scholar
  41. 41.
    Twining BS, Baines SB, Fisher NS, Maser J, Vogt S, Jacobsen C, et al. Quantifying trace elements in individual aquatic protist cells with a synchrotron X-ray fluorescence microprobe. Anal Chem. 2003;75:3806–16.CrossRefGoogle Scholar
  42. 42.
    Schoonjans T, Silversmit G, Vekemans B, Schmitz S, Burghammer M, Riekel C, et al. Fundamental parameter based quantification algorithm for confocal nano-X-ray fluorescence analysis. Spectrochim Acta B. 2012;67:32–42.CrossRefGoogle Scholar
  43. 43.
    De Samber B, Silversmit G, De Schamphelaere K, Evens R, Schoonjans T, Vekemans B, et al. Element-to-tissue correlation in biological samples determined by three-dimensional X-ray imaging methods. J Anal At Spectrom. 2010;25:544–53.CrossRefGoogle Scholar
  44. 44.
    De Jonge MD, Holzner C, Baines SB, Twining BS, Ignatyev K, Diaz J, et al. Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution. Proc Natl Acad Sci U S A. 2010;107:15676–80.CrossRefGoogle Scholar
  45. 45.
    Perrett D. From ‘protein’ to the beginnings of clinical proteomics. Proteom Clin Appl. 2007;1:720–38.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tobias Senkbeil
    • 1
    • 2
  • Tawheed Mohamed
    • 1
    • 3
    • 4
  • Rolf Simon
    • 5
  • David Batchelor
    • 5
  • Alessio Di Fino
    • 6
  • Nick Aldred
    • 6
  • Anthony S. Clare
    • 6
  • Axel Rosenhahn
    • 2
  1. 1.Institute of Functional InterfacesKIT Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  2. 2.Analytical Chemistry - BiointerfacesRuhr-University BochumBochumGermany
  3. 3.Applied Physical ChemistryUniversity of HeidelbergHeidelbergGermany
  4. 4.Institute of Physics and Technology, International X-ray Optics LabNational Research Tomsk Polytechnic University (TPU)TomskRussia
  5. 5.ANKA SynchrotronstrahlungsquelleKIT Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  6. 6.School of Marine Science and TechnologyNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations