Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 11, pp 2687–2695 | Cite as

Toward faster and higher resolution LA–ICPMS imaging: on the co-evolution of LA cell design and ICPMS instrumentation

  • Alexander Gundlach-Graham
  • Detlef Günther
Trends
Part of the following topical collections:
  1. Young Investigators in Analytical and Bioanalytical Science

Abstract

We describe trends in fast, high resolution elemental imaging by laser ablation–inductively coupled plasma mass spectrometry (LA–ICPMS). Recently developed low dispersion LA cells deliver quantitative transport of ablated aerosols within 10 ms and also provide enhanced sensitivity compared to conventional LA cells because the analyte ion signal becomes less diluted during aerosol transport. When connected to simultaneous ICPMS instruments, these low dispersion LA cells offer a platform for high speed and high lateral resolution shot-resolved LA–ICPMS imaging. Here, we examine the current paradigms of LA–ICPMS imaging and discuss how newly developed LA cell technology combined with simultaneous ICPMS instrumentation is poised to overcome current instrumental limitations to deliver faster, higher resolution elemental imaging.

Graphical Abstract

On means for obtaining high-speed, high-resolution, multielemental images is to combine new lowdispersion laser-ablation cell technology with an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS). Here, we show three selected-isotope LA-ICP-TOFMS images of a hetereogeneous Opalinus clay sample

Keywords

Laser ablation ICPMS Elemental imaging Mass spectrometry Time-of-flight 

Notes

Acknowledgments

Alex Gundlach-Graham would like to acknowledge financial support through the Marie Curie International Incoming Fellowship: the research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 624280. A.G.-G. thanks Gunnar Schwarz for helpful critiques and comments on an early version of this manuscript. We would also like the acknowledge the work of Marcel Burger, Steffen Allner, Luzia Gyr, and Dr. Hao Wang for contribution to collection and analysis of the LA–ICP–TOFMS data presented here, and Dr. Daniel Grolimund for providing the cesium-infiltrated Opalinus clay sample.

Compliance with ethical standards

The authors declare no conflicts of interest.

References

  1. 1.
    Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11(4):417–22.CrossRefGoogle Scholar
  2. 2.
    Wang HA, Grolimund D, Giesen C, Borca CN, Shaw-Stewart JR, Bodenmiller B, et al. Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal Chem. 2013;85(21):10107–16.CrossRefGoogle Scholar
  3. 3.
    Van Malderen SJM, van Elteren JT, Vanhaecke F. Development of a fast laser ablation-inductively coupled plasma-mass spectrometry cell for sub-μm scanning of layered materials. J Anal At Spectrom. 2015;30(1):119–25.CrossRefGoogle Scholar
  4. 4.
    Van Malderen SJ, van Elteren JT, Vanhaecke F. Submicrometer imaging by laser ablation-inductively coupled plasma mass spectrometry via signal and image deconvolution approaches. Anal Chem. 2015;87(12):6125–32.CrossRefGoogle Scholar
  5. 5.
    Gundlach-Graham AW, Burger M, Allner S, Schwarz G, Wang HAO, Gyr L, et al. High-speed, high-resolution, multi-elemental LA–ICP–TOFMS imaging: Part I. instrumentation and two-dimensional imaging of geological samples. Anal Chem. 2015;87(16):8250–8.CrossRefGoogle Scholar
  6. 6.
    Burger M, Gundlach-Graham A, Allner S, Schwarz G, Wang HAO, Gyr L, et al. High-speed, high-resolution, multielemental LA–ICP–TOFMS imaging: Part II. critical evaluation of quantitative three-dimensional imaging of major, minor, and trace elements in geological samples. Anal Chem. 2015;87(16):8259–67.CrossRefGoogle Scholar
  7. 7.
    Kindness A, Sekaran CN, Feldmann J. Two-dimensional mapping of copper and zinc in liver sections by laser ablation-inductively coupled plasma mass spectrometry. Clin Chem. 2003;49(11):1916–23.CrossRefGoogle Scholar
  8. 8.
    Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma‐mass spectrometry. Geostand Geoanal Res. 2007;31(4):331–43.Google Scholar
  9. 9.
    Sabine Becker J. Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS): state of the art and future developments. J Mass Spectrom. 2013;48(2):255–68.CrossRefGoogle Scholar
  10. 10.
    Gray AL. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst. 1985;110(5):551–6.CrossRefGoogle Scholar
  11. 11.
    Günther D, Hattendorf B. Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. TrAC Trends Anal Chem. 2005;24(3):255–65.CrossRefGoogle Scholar
  12. 12.
    Hattendorf B, Günther D. Laser ablation inductively coupled plasma mass spectrometry (LA–ICPMS). Handbook of spectroscopy. Weinheim: Wiley-VCH; 2014. p. 647–98.Google Scholar
  13. 13.
    Longerich HP, Günther D, Jackson SE. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius J Anal Chem. 1996;355(5–6):538–42.Google Scholar
  14. 14.
    Kuhn H-R, Guillong M, Günther D. Size-related vaporisation and ionisation of laser-induced glass particles in the inductively coupled plasma. Anal Bioanal Chem. 2004;378(4):1069–74.CrossRefGoogle Scholar
  15. 15.
    Russo RE, Mao X, Gonzalez JJ, Zorba V, Yoo J. Laser ablation in analytical chemistry. Anal Chem. 2013;85(13):6162–77.CrossRefGoogle Scholar
  16. 16.
    Lear J, Hare D, Adlard P, Finkelstein D, Doble P. Improving acquisition times of elemental bio-imaging for quadrupole-based LA–ICP–MS. J Anal At Spectrom. 2012;27(1):159–64.CrossRefGoogle Scholar
  17. 17.
    Holland JF, Enke CG, Allison J, Stults JT, Pinkston JD, Newcome B, et al. Mass spectrometry on the chromatographic time scale: realistic expectations. Anal Chem. 1983;55(9):997A–1012.CrossRefGoogle Scholar
  18. 18.
    Schilling GD, Andrade FJ, Barnes JH, Sperline RP, Denton MB, Barinaga CJ, et al. Continuous simultaneous detection in mass spectrometry. Anal Chem. 2007;79(20):7662–8.CrossRefGoogle Scholar
  19. 19.
    Bleiner D, Belloni F, Doria D, Lorusso A, Nassisi V. Overcoming pulse mixing and signal tailing in laser ablation inductively coupled plasma mass spectrometry depth profiling. J Anal At Spectrom. 2005;20(12):1337–43.CrossRefGoogle Scholar
  20. 20.
    Bleiner D, Gunther D. Theoretical description and experimental observation of aerosol transport processes in laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2001;16(5):449–56.CrossRefGoogle Scholar
  21. 21.
    Plotnikov A, Vogt C, Wetzig K, Kyriakopoulos A. A theoretical approach to the interpretation of the transient data in scanning laser ablation inductively coupled plasma mass spectrometry: consideration of the geometry of the scanning area. Spectrochim Acta B. 2008;63(4):474–83.CrossRefGoogle Scholar
  22. 22.
    Triglav J, van Elteren JT, Šelih VS. Basic modeling approach to optimize elemental imaging by laser ablation ICPMS. Anal Chem. 2010;82(19):8153–60.CrossRefGoogle Scholar
  23. 23.
    Wang HAO, Grolimund D, Van Loon LR, Barmettler K, Borca CN, Aeschlimann B, et al. Quantitative chemical imaging of element diffusion into heterogeneous media using laser ablation inductively coupled plasma mass spectrometry, synchrotron micro-x-ray fluorescence, and extended x-ray absorption fine structure spectroscopy. Anal Chem. 2011;83(16):6259–66.CrossRefGoogle Scholar
  24. 24.
    Elteren J, Izmer A, Sala M, Orsega EF, Selih VS, Panighello S, et al. 3D laser ablation-ICP–mass spectrometry mapping for the study of surface layer phenomena – a case study for weathered glass. J Anal At Spectrom. 2013;28:994–1004.CrossRefGoogle Scholar
  25. 25.
    Chirinos JR, Oropeza DD, Gonzalez JJ, Hou HM, Morey M, Zorba V, et al. Simultaneous 3-dimensional elemental imaging with LIBS and LA–ICP–MS. J Anal At Spectrom. 2014;29(7):1292–8.CrossRefGoogle Scholar
  26. 26.
    Jakubowski N, Prohaska T, Rottmann L, Vanhaecke F. Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry Part I. Tutorial: fundamentals and instrumentation. J Anal At Spectrom. 2011;26(4):693–726.CrossRefGoogle Scholar
  27. 27.
    Wehe C, Thyssen G, Herdering C, Raj I, Ciarimboli G, Sperling M, et al. Elemental bioimaging by means of fast scanning laser ablation-inductively coupled plasma-mass spectrometry. J Am Soc Mass Spectrom. 2015;26(8):1274–82.CrossRefGoogle Scholar
  28. 28.
    Dziewatkoski MP, Daniels LB, Olesik JW. Time-resolved inductively coupled plasma mass spectrometry measurements with individual, monodisperse drop sample introduction. Anal Chem. 1996;68(7):1101–9.CrossRefGoogle Scholar
  29. 29.
    Heinrich C, Pettke T, Halter W, Aigner-Torres M, Audétat A, Günther D, et al. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta. 2003;67(18):3473–97.CrossRefGoogle Scholar
  30. 30.
    Borovinskaya O, Hattendorf B, Tanner M, Gschwind S, Gunther D. A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J Anal At Spectrom. 2013;28(2):226–33.CrossRefGoogle Scholar
  31. 31.
    Myers DP, Li G, Yang P, Hieftje GM. An inductively coupled plasma–time-of-flight mass spectrometer for elemental analysis. Part I: optimization and characteristics. J Am Soc Mass Spectrom. 1994;5(11):1008–16.CrossRefGoogle Scholar
  32. 32.
    Burgoyne TW, Hieftje GM, Hites RA. Design and performance of a plasma-source mass spectrograph. J Am Soc Mass Spectrom. 1997;8(4):307–18.CrossRefGoogle Scholar
  33. 33.
    Hieftje GM, Barnes JH, Grøn OA, Leach AM, McClenathan DM, Ray SJ, et al. Evolution and revolution in instrumentation for plasma-source mass spectrometry. Pure Appl Chem. 2001;73(10):1579–88.CrossRefGoogle Scholar
  34. 34.
    Mahoney PP, Li G, Hieftje GM. Laser ablation-inductively coupled plasma mass spectrometry with a time-of-flight mass analyser. J Anal At Spectrom. 1996;11(6):401–5.CrossRefGoogle Scholar
  35. 35.
    Bleiner D, Hametner K, Günther D. Optimization of a laser ablation-inductively coupled plasma “time of flight” mass spectrometry system for short transient signal acquisition. Fresenius J Anal Chem. 2000;368(1):37–44.CrossRefGoogle Scholar
  36. 36.
    Leach AM, Hieftje GM. Standardless semiquantitative analysis of metals using single-shot laser ablation inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2001;73(13):2959–67.CrossRefGoogle Scholar
  37. 37.
    Borovinskaya O, Gschwind S, Hattendorf B, Tanner M, Günther D. Simultaneous mass quantification of nanoparticles of different composition in a mixture by microdroplet generator-ICPTOFMS. Anal Chem. 2014;86(16):8142–8.CrossRefGoogle Scholar
  38. 38.
    Leach AM, Hieftje GM. Factors affecting the production of fast transient signals in single shot laser ablation inductively coupled plasma mass spectrometry. Appl Spectrosc. 2002;56(1):62–9.CrossRefGoogle Scholar
  39. 39.
    Liu XR, Horlick G. In-situ laser-ablation sampling for inductively-coupled plasma-atomic emission-spectrometry. Spectrochim Acta B. 1994;50(4–7):537–48.Google Scholar
  40. 40.
    Tanner M, Gunther D. In torch laser ablation sampling for inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2005;20(9):987–9.CrossRefGoogle Scholar
  41. 41.
    Tabersky D, Nishiguchi K, Utani K, Ohata M, Dietiker R, Fricker MB, et al. Aerosol entrainment and a large-capacity gas exchange device (Q-GED) for laser ablation inductively coupled plasma mass spectrometry in atmospheric pressure air. J Anal At Spectrom. 2013;28(6):831–42.CrossRefGoogle Scholar
  42. 42.
    Pisonero J, Fliegel D, Gunther D. High efficiency aerosol dispersion cell for laser ablation-ICP–MS. J Anal At Spectrom. 2006;21(9):922–31.CrossRefGoogle Scholar
  43. 43.
    Gurevich EL, Hergenroder R. A simple laser ICP–MS ablation cell with wash-out time less than 100 ms. J Anal At Spectrom. 2007;22(9):1043–50.CrossRefGoogle Scholar
  44. 44.
    Lindner H, Autrique D, Pisonero J, Gunther D, Bogaerts A. Numerical simulation analysis of flow patterns and particle transport in the HEAD laser ablation cell with respect to inductively coupled plasma spectrometry. J Anal At Spectrom. 2010;25(3):295–304.CrossRefGoogle Scholar
  45. 45.
    Douglas DN, Managh AJ, Reid HJ, Sharp BL. A high-speed, integrated ablation cell and dual concentric injector plasma torch for laser ablation-inductively coupled plasma-mass spectrometry. Anal Chem. 2015;87(22):11285–94.CrossRefGoogle Scholar
  46. 46.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009;81(16):6813–9822.CrossRefGoogle Scholar
  47. 47.
    Gundlach-Graham A, Dennis EA, Ray SJ, Enke CG, Barinaga CJ, Koppenaal DW, et al. First inductively coupled plasma-distance-of-flight mass spectrometer: instrument performance with a microchannel plate/phosphor imaging detector. J Anal At Spectrom. 2013;28(9):1385–95.CrossRefGoogle Scholar
  48. 48.
    Borovinskaya O, Tanner M, Cubison M, Günther D (2015) A new commercial ICP–TOFMS for the anaylsis of nanoparticles. European winter conference on plasma spectrochemistry, Münster, Germany, 23 February 2015.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations