Analytical and Bioanalytical Chemistry

, Volume 408, Issue 5, pp 1357–1364 | Cite as

Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods

Research Paper
Part of the following topical collections:
  1. Fiber-based Platforms for Bioanalytics

Abstract

Nanofibers functionalized by metal nanostructures and particles are exploited as effective flexible substrates for surface-enhanced Raman scattering (SERS) analysis. Their complex three-dimensional structure may provide Raman signals enhanced by orders of magnitude compared to untextured surfaces. Understanding the origin of such improved performances is therefore very important for pushing nanofiber-based analytical technologies to their upper limit. Here, we report on polymer nanofiber mats which can be exploited as substrates for enhancing the Raman spectra of adsorbed probe molecules. The increased surface area and the scattering of light in the nanofibrous system are individually analyzed as mechanisms to enhance Raman scattering. The deposition of gold nanorods on the fibers further amplifies Raman signals due to SERS. This study suggests that Raman signals can be finely tuned in intensity and effectively enhanced in nanofiber mats and arrays by properly tailoring the architecture, composition, and light-scattering properties of the complex networks of filaments.

Graphical abstract

Enhancement of Raman signals by electrospun nanofiber mats

Keywords

Electrospinning Nanofibers Raman spectroscopy SERS Au Nanorods 

Supplementary material

216_2015_9226_MOESM1_ESM.pdf (643 kb)
ESM 1(PDF 642 kb)

References

  1. 1.
    McDonagh C, Burke CS, MacCraith BD. Optical chemical sensors. Chem Rev. 2008;108:400–22.CrossRefGoogle Scholar
  2. 2.
    Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108:462–93.CrossRefGoogle Scholar
  3. 3.
    Novotny L, Van Hulst N. Antennas for light. Nat Photonics. 2011;5:83–90.CrossRefGoogle Scholar
  4. 4.
    Baaske MD, Foreman MR, Vollmer F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat Nanotechnol. 2014;9:933–9.CrossRefGoogle Scholar
  5. 5.
    Kneipp K, Moskovits M, Kneipp H. Surface enhanced raman scattering. New York: Springer; 2006.CrossRefGoogle Scholar
  6. 6.
    Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ. Label-free, single-molecule detection with optical microcavities. Science. 2007;317:783–7.CrossRefGoogle Scholar
  7. 7.
    Özdemira SK, Zhu J, Yang X, Peng B, Yilmaz H, He L, et al. Highly sensitive detection of nanoparticles with a self-referenced and self heterodyned whispering-gallery Raman microlaser. Proc Natl Acad Sci U S A. 2014;111:E3836–44.CrossRefGoogle Scholar
  8. 8.
    Sun Y, Fan X. Optical ring resonators for biochemical and chemical sensing. Anal Bioanal Chem. 2011;399:205–11.CrossRefGoogle Scholar
  9. 9.
    Sharma AC, Jana T, Kesavamoorthy R, Shi L, Virji MA, Finegold DN, et al. A general photonic crystal sensing motif: creatinine in bodily fluids. J Am Chem Soc. 2004;126:2971–7.CrossRefGoogle Scholar
  10. 10.
    Baker JE, Sriram R, Miller BL. Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. Lab Chip. 2015;15:971–90.CrossRefGoogle Scholar
  11. 11.
    Fujiwara M, Toubaru K, Noda T, Zhao H-Q, Takeuchi S. Highly efficient coupling of photons from nanoemitters into single-mode optical fibers. Nano Lett. 2011;11:4362–5.CrossRefGoogle Scholar
  12. 12.
    Stockman M. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett. 2004;93:137404.CrossRefGoogle Scholar
  13. 13.
    Yang X, Zhang AY, Wheeler DA, Bond TC, Gu C, Li Y. Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber. Anal Bioanal Chem. 2012;402:687–91.CrossRefGoogle Scholar
  14. 14.
    Zijlstra P, Paulo PMR, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol. 2012;7:379–82.CrossRefGoogle Scholar
  15. 15.
    Aizpurua J, Bryant GW, Richter LJ, Garcia de Abajo FJ. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys Rev B. 2005;71:235420.CrossRefGoogle Scholar
  16. 16.
    Halas NJ, Lal S, Chang W-S, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev. 2011;111:3913–61.CrossRefGoogle Scholar
  17. 17.
    Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature. 2009;457:455–8.CrossRefGoogle Scholar
  18. 18.
    Lerma Arce C, Witters D, Puers R, Lammertyn J, Bienstman P. Silicon photonic sensors incorporated in a digital microfluidic system. Anal Bioanal Chem. 2012;404:2887–94.CrossRefGoogle Scholar
  19. 19.
    De Angelis F, Gentile F, Mecarini F, Das G, Moretti M, Candeloro P, et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics. 2011;5:682–7.CrossRefGoogle Scholar
  20. 20.
    Colthup N. Introduction to infrared and Raman spectroscopy. Elsevier; 2012.Google Scholar
  21. 21.
    Eesley GL. Coherent Raman Spectroscopy. Elsevier; 2013.Google Scholar
  22. 22.
    Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8:235–46.CrossRefGoogle Scholar
  23. 23.
    Guieu V, Lagugné‐Labarthet F, Servant L, Talaga D, Sojic N. Ultrasharp optical‐fiber nanoprobe array for raman local‐enhancement imaging. Small. 2008;4:96–9.CrossRefGoogle Scholar
  24. 24.
    De Luca AC, Rusciano G, Ciancia R, Martinelli V, Pesce G, Rotoli B, et al. Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman tweezers. Opt Express. 2008;16:7943–57.CrossRefGoogle Scholar
  25. 25.
    Maier SA. Plasmonics: fundamentals and applications. Springer; 2007.Google Scholar
  26. 26.
    Fan M, Andrade GF, Brolo AG. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta. 2011;693:7–25.CrossRefGoogle Scholar
  27. 27.
    Moskovits M. Surface‐enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc. 2005;36:485–96.CrossRefGoogle Scholar
  28. 28.
    Harpster MH, Zhang H, Sankara-Warrier AK, Ray BH, Ward TR, Kollmar JP, et al. SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label. Biosens Bioelectron. 2009;25:674–81.CrossRefGoogle Scholar
  29. 29.
    Xiao GN, Man SQ. Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem Phys Lett. 2007;447:305–9.CrossRefGoogle Scholar
  30. 30.
    D’Andrea C, Bochterle J, Toma A, Huck C, Neubrech F, Messina E, et al. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. ACS Nano. 2013;7:3522–31.CrossRefGoogle Scholar
  31. 31.
    Foti A, D’Andrea C, Bonaccorso F, Lanza M, Calogero G, Messina E, et al. A shape-engineered surface-enhanced raman scattering optical fiber sensor working from the visible to the near-infrared. Plasmonics. 2013;8:13–23.CrossRefGoogle Scholar
  32. 32.
    Zeman EJ, Schatz GC. An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. J Phys Chem. 1987;91:634–43.CrossRefGoogle Scholar
  33. 33.
    Maher RC. SERS hot spots. Raman spectroscopy for nanomaterials characterization 215–260. Berlin: Springer; 2012.Google Scholar
  34. 34.
    Polavarapu L, Pérez-Juste J, Xu QH, Liz-Marzán LM. Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. J Mater Chem C. 2014;2:7460–76.CrossRefGoogle Scholar
  35. 35.
    Wu DY, Li JF, Ren B, Tian ZQ. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem Soc Rev. 2008;37:1025–41.CrossRefGoogle Scholar
  36. 36.
    Vo-Dinh T. SERS chemical sensors and biosensors: new tools for environmental and biological analysis. Sensors Actuat B Chem. 1995;29:183–9.CrossRefGoogle Scholar
  37. 37.
    Boyd S, Bertino MF, Ye D, White LS, Seashols SJ. Highly sensitive detection of blood by surface enhanced Raman scattering. J Forensic Sci. 2013;58:753–6.CrossRefGoogle Scholar
  38. 38.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–53.CrossRefGoogle Scholar
  39. 39.
    Scaffidi JP, Gregas MK, Seewaldt V, Vo-Dinh T. SERS-based plasmonic nanobiosensing in single living cells. Anal Bioanal Chem. 2009;393:1135–41.CrossRefGoogle Scholar
  40. 40.
    Ahmed A, Gordon R. Single molecule directivity enhanced Raman scattering using nanoantennas. Nano Lett. 2012;12:2625–30.CrossRefGoogle Scholar
  41. 41.
    Hatab NA, Hsueh C-H, Gaddis AL, Retterer ST, Li J-H, Eres G, et al. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 2010;10:4952–5.CrossRefGoogle Scholar
  42. 42.
    Banholzer MJ, Millstone JE, Qin L, Mirkin CA. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev. 2008;37:885–97.CrossRefGoogle Scholar
  43. 43.
    Sun J, Xianyu Y, Jiang X. Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem Soc Rev. 2014;43:6239–53.CrossRefGoogle Scholar
  44. 44.
    He D, Hu B, Yao Q-F, Wang K, Yu S-H. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano. 2009;3:3993–4002.CrossRefGoogle Scholar
  45. 45.
    Shao J, Tong L, Tang S, Guo Z, Zhang H, Li P, et al. PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. ACS Appl Mater Interfaces. 2015;7:5391–9.CrossRefGoogle Scholar
  46. 46.
    Persano L, Camposeo A, Pisignano D. Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Prog Polym Sci. 2015;43:48–95.CrossRefGoogle Scholar
  47. 47.
    Camposeo A, Persano L, Pisignano D. Light-emitting electrospun nanofibers for nanophotonics and optoelectronics. Macromol Mater Eng. 2013;298:487–503.CrossRefGoogle Scholar
  48. 48.
    Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng. 2013;298:504–20.CrossRefGoogle Scholar
  49. 49.
    Fang J, Niu H, Wang H, Wang X, Lin T. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci. 2013;6:2196–202.CrossRefGoogle Scholar
  50. 50.
    Pisignano D. Polymer nanofibers, Royal Society of Chemistry. 2013.Google Scholar
  51. 51.
    Zhang C-L, Lv K-P, Cong H-P, Yu S-H. Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free-standing SERS substrates by electrospinning. Small. 2012;8:648–53.CrossRefGoogle Scholar
  52. 52.
    Yang T, Yang H, Zhen SJ, Huang CZ. Hydrogen-bond-mediated in situ fabrication of AgNPs/Agar/PAN electrospun nanofibers as reproducible SERS substrates. ACS Appl Mater Interfaces. 2015;7:1586–94.CrossRefGoogle Scholar
  53. 53.
    Lee CH, Tian L, Abbas A, Kattumenu R, Singamaneni S. Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates. Nanotechnology. 2011;22:275311.CrossRefGoogle Scholar
  54. 54.
    Zhao Y, Sun L, Xi M, Feng Q, Jiang C, Fong H. Electrospun TiO2 nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering. ACS Appl Mater Interfaces. 2014;6:5759–67.CrossRefGoogle Scholar
  55. 55.
    Qian Y, Meng G, Huang Q, Zhu C, Huang Z, Suna K, et al. Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale. 2014;6:4781–8.CrossRefGoogle Scholar
  56. 56.
    Yang H, Huang CZ. Polymethacrylic acid–facilitated nanofiber matrix loading Ag nanoparticles for SERS measurements. RSC Adv. 2014;4:38783–90.CrossRefGoogle Scholar
  57. 57.
    Marega C, Maculan J, Rizzi GA, Saini R, Cavaliere E, Gavioli L, et al. Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines. Nanotechnology. 2015;26:075501.CrossRefGoogle Scholar
  58. 58.
    Szymborski T, Witkowska E, Adamkiewicz W, Waluk J, Kamińska A. Electrospun polymer mat as a SERS platform for the immobilization and detection of bacteria from fluids. Analyst. 2014;139:5061–4.CrossRefGoogle Scholar
  59. 59.
    Gao W, Chen G, Xu W, Yang C, Xu S. Surface-enhanced Raman scattering (SERS) chips made from metal nanoparticle-doped polymer fibers. RSC Adv. 2014;4:23838–45.CrossRefGoogle Scholar
  60. 60.
    Vigderman L, Khanal BP, Zubarev ER. Functional gold nanorods: synthesis, self‐assembly, and sensing applications. Adv Mater. 2012;24:4811–41.CrossRefGoogle Scholar
  61. 61.
    Indrasekara ASDS, Wadams RC, Fabris L. Ligand exchange on gold nanorods: going back to the future. Part Part Syst Charact. 2014;31:819–38.CrossRefGoogle Scholar
  62. 62.
    Thompson CJ, Chase GG, Yarin AL, Reneker DH. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48:6913e6922.CrossRefGoogle Scholar
  63. 63.
    Fridrikh SV, Yu JH, Brenner MP, Rutledge GC. Controlling the fiber diameter during electrospinning. Phys Rev Lett. 2003;90:144502.CrossRefGoogle Scholar
  64. 64.
    Lauricella M, Pontrelli G, Coluzza I, Pisignano D, Succi S. Different regimes of the uniaxial elongation of electrically charged viscoelastic jets due to dissipative air drag. Mech Res Commun. 2015;69:97–102.CrossRefGoogle Scholar
  65. 65.
    Hou H, Jun Z, Reuning A, Schaper A, Wendorff JH, Greiner A. Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers. Macromolecules. 2002;35:2429–31.CrossRefGoogle Scholar
  66. 66.
    Wang X, Drew C, Lee S-H, Senecal KJ, Kumar J, Samuelson LA. Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2002;2:1273–5.CrossRefGoogle Scholar
  67. 67.
    Willis HA, Zichy VJI, Hendra PJ. The laser-Raman and infra-red spectra of poly (methyl methacrylate). Polymer. 1969;10:737–46.CrossRefGoogle Scholar
  68. 68.
    Thomas KJ, Sheeba M, Nampoori VPN, Vallabhan CPG, Radhakrishnan P. Raman spectra of polymethylmethacrylate optical fibres excited by a 532 nm diode pumped solid state laser. J Opt A Pure Appl Opt. 2008;10:055303.CrossRefGoogle Scholar
  69. 69.
    Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim: Wiley-VCH Verlag; 2004.Google Scholar
  70. 70.
    Wiersma DS. Disordered photonics. Nat Photonics. 2013;7:188–96.CrossRefGoogle Scholar
  71. 71.
    Kim I-D, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett. 2006;6:2009–13.CrossRefGoogle Scholar
  72. 72.
    D’Andrea C, Fazio B, Gucciardi PG, Giordano MC, Martella C, Chiappe D, et al. SERS enhancement and field confinement in nanosensors based on self-organized gold nanowires produced by ion-beam sputtering. J Phys Chem C. 2014;118:8571–80.CrossRefGoogle Scholar
  73. 73.
    Kessentini S, Barchiesi D, D’Andrea C, Toma A, Guillot N, Di Fabrizio E, et al. Gold dimer nanoantenna with slanted gap for tunable LSPR and improved SERS. J Phys Chem C. 2014;118:3209–19.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Istituto Nanoscienze-CNREuromediterranean Center for Nanomaterial Modelling and Technology (ECMT)LecceItaly
  2. 2.Soft Materials and Technologies SRLLecceItaly
  3. 3.CNR-IPCFIstituto per i Processi Chimico-FisiciMessinaItaly
  4. 4.Dipartimento di Matematica e Fisica “Ennio De Giorgi”Università del SalentoLecceItaly

Personalised recommendations