Analytical and Bioanalytical Chemistry

, Volume 408, Issue 10, pp 2407–2424 | Cite as

Recent advances in the determination of tocopherols in biological fluids: from sample pretreatment and liquid chromatography to clinical studies

  • Barbora Cervinkova
  • Lenka Kujovska Krcmova
  • Dagmar Solichova
  • Bohuslav Melichar
  • Petr Solich


Vitamin E comprises eight related compounds: α-, β-, γ-, δ-tocopherols and α-, β-, γ-, δ-tocotrienols. In the past, α-tocopherol has been the isomer that was studied most, and its anti-inflammatory and anti-proliferative effects have been described. Therefore, many prevention trials have investigated the effect of α-tocopherol on human health. Current research studies have also defined the important roles of other tocopherols, such as anti-inflammatory, anti-proliferative and cancer preventative effects. Knowledge of the individual tocopherols could help to understand their roles in various metabolic pathways. This review summarizes the recent trends in sample pretreatment, liquid chromatography and selected applications of the determination of tocopherols in various biological materials. The relationship between tocopherol isomers and serious diseases is also described.

Graphical Abstract

Article structure


Tocopherols Antioxidants Clinical trials Biological samples Sample pretreatment Liquid chromatography 



This work was supported by projects Specific University Research (SVV) 260 184, the European Social Fund and the state budget of the Czech Republic, TEAB, project no. CZ.1.07/2.3.00/20.0235, Internal Grant Agency Ministry of Health Czech Republic (IGA MH CR) NT 14265-3/2013, IGA MH CR NT 13564-4/2012, IGA MH CR NT 13566-4/2012 and MH CZ - DRO (University Hospital Hradec Kralove (UHHK), 00179906).

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.


  1. 1.
    Herting DC (1966) Perspective on vitamin E. Am J Clin Nutr 19(3):210–218Google Scholar
  2. 2.
    Niki E (2014) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 66:3–12. doi: 10.1016/j.freeradbiomed.2013.03.022 CrossRefGoogle Scholar
  3. 3.
    Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 51(5):1000–1013. doi: 10.1016/j.freeradbiomed.2011.05.017 CrossRefGoogle Scholar
  4. 4.
    Colombo ML (2010) An update on vitamin E, tocopherol and tocotrienol-perspectives. Molecules 15(4):2103–2113. doi: 10.3390/molecules15042103 CrossRefGoogle Scholar
  5. 5.
    Wagner KH, Kamal-Eldin A, Elmadfa I (2004) Gamma-tocopherol - an underestimated vitamin? Ann Nutr Metab 48(3):169–188. doi: 10.1159/000079555 CrossRefGoogle Scholar
  6. 6.
    Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43(1):4–15. doi: 10.1016/j.freeradbiomed.2007.03.024 CrossRefGoogle Scholar
  7. 7.
    Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Igarashi O, Arai H, Inoue K (1997) Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409(1):105–108. doi: 10.1016/s0014-5793(97)00499-7 CrossRefGoogle Scholar
  8. 8.
    Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13(10):1145–1155Google Scholar
  9. 9.
    Nagata Y, Nishio T, Kanazawa H (2011) Reaction monitoring of tocopherols with active nitrogen oxides by ultra high-speed liquid chromatography. J Pharm Biomed Anal 55(2):241–246. doi: 10.1016/j.jpba.2010.12.036 CrossRefGoogle Scholar
  10. 10.
    Ulatowski L, Manor D (2013) Vitamin E trafficking in neurologic health and disease. Annu Rev Nutr 33:87–103. doi: 10.1146/annurev-nutr-071812-161252 CrossRefGoogle Scholar
  11. 11.
    Mangialasche F, Xu W, Kivipelto M, Costanzi E, Ercolani S, Pigliautile M, Cecchetti R, Baglioni M, Simmons A, Soininen H, Tsolaki M, Kloszewska I, Vellas B, Lovestone S, Mecocci P, AddNeuroMed C (2012) Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging 33(10):2282–2290. doi: 10.1016/j.neurobiolaging.2011.11.019 CrossRefGoogle Scholar
  12. 12.
    Lee HP, Zhu X, Casadesus G, Castellani RJ, Nunomura A, Smith MA, Lee H-g, Perry G (2010) Antioxidant approaches for the treatment of Alzheimer's disease. Expert Rev Neurother 10(7):1201–1208. doi: 10.1586/ern.10.74 CrossRefGoogle Scholar
  13. 13.
    Berman K, Brodaty H (2004) Tocopherol (vitamin E) in Alzheimer's disease and other neurodegenerative disorders. CNS Drugs 18(12):807–825. doi: 10.2165/00023210-200418120-00005 CrossRefGoogle Scholar
  14. 14.
    Lee IM, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE, Hennekens CH, Buring JE (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer - the women's health study: a randomized controlled trial. J Am Med Assoc 294(1):56–65. doi: 10.1001/jama.294.1.56 CrossRefGoogle Scholar
  15. 15.
    Knekt P, Ritz J, Pereira MA, O'Reilly EJ, Augustsson K, Fraser GE, Goldbourt U, Heitmann BL, Hallmans G, Liu SM, Spiegelman D, Stevens J, Virtamo J, Willett WC, Rimm EB, Ascherio A (2004) Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. Am J Clin Nutr 80(6):1508–1520Google Scholar
  16. 16.
    Jialal I, Devaraj S (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 342(25):1917–1918CrossRefGoogle Scholar
  17. 17.
    Traber MG (2007) Heart disease and single-vitamin supplementation. Am J Clin Nutr 85(1):293S–299SGoogle Scholar
  18. 18.
    Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JMO, Ross C, Arnold A, Sleight P, Probstfield J, Dagenais GR, Investigators H, Investigators H-T (2005) Effects of long-term supplementation on and cancer vitamin E cardiovascular events - a randomized controlled trial. J Am Med Assoc 293(11):1338–1347CrossRefGoogle Scholar
  19. 19.
    Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC (1993) Vitamin-E consumption and the risk of coronary-disease in women. N Engl J Med 328(20):1444–1449. doi: 10.1056/nejm199305203282003 CrossRefGoogle Scholar
  20. 20.
    Jha P, Flather M, Lonn E, Farkouh M, Yusuf S (1995) Antioxidant vitamins and cardiovascular-disease - a critical review of epidemiologic and clinical-trial data. Ann Intern Med 123(11):860–872CrossRefGoogle Scholar
  21. 21.
    Waters DD, Alderman EL, Hsia J, Howard BV, Cobb FR, Rogers WJ, Ouyang P, Thompson P, Tardif JC, Higginson L, Bittner V, Steffes M, Gordon DJ, Proschan M, Younes N, Verter JI (2002) Effects of hormone replacement therapy and antioxidant vitamin supplements on coronary atherosclerosis in postmenopausal women - a randomized controlled trial. J Am Med Assoc 288(19):2432–2440. doi: 10.1001/jama.288.19.2432 CrossRefGoogle Scholar
  22. 22.
    Vardi M, Levy NS, Levy AP (2013) Vitamin E in the prevention of cardiovascular disease: the importance of proper patient selection. J Lipid Res 54(9):2307–2314. doi: 10.1194/jlr.R026641 CrossRefGoogle Scholar
  23. 23.
    Saremi A, Arora R (2010) Vitamin E and cardiovascular disease. Am J Ther 17(3):E56–E65. doi: 10.1097/MJT.0b013e31819cdc9a CrossRefGoogle Scholar
  24. 24.
    Cordero Z, Drogan D, Weikert C, Boeing H (2010) Vitamin E and risk of cardiovascular diseases: a review of epidemiologic and clinical trial studies. Crit Rev Food Sci Nutr 50(5):420–440. doi: 10.1080/10408390802304230 CrossRefGoogle Scholar
  25. 25.
    Donkena KV, Karnes RJ, Young CYF (2010) Vitamins and prostate cancer risk. Molecules 15(3):1762–1783. doi: 10.3390/molecules15031762 CrossRefGoogle Scholar
  26. 26.
    Heinonen OP, Albanes D, Virtamo J, Taylor PR, Huttunen JK, Hartman AM, Haapakoski J, Malila N, Rautalahti M, Ripatti S, Maenpaa H, Teerenhovi L, Koss L, Virolainen M, Edwards BK (1998) Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J Natl Cancer Inst 90(6):440–446. doi: 10.1093/jnci/90.6.440 CrossRefGoogle Scholar
  27. 27.
    Smolarek AK, Suh N (2011) Chemopreventive activity of vitamin E in breast cancer: a focus on gamma- and delta-tocopherol. Nutrients 3(11):962–986. doi: 10.3390/nu3110962 CrossRefGoogle Scholar
  28. 28.
    Nayeem F, Nagamani M, Anderson KE, Huang Y, Graday JJ, Lu L-JW (2009) Dietary beta-tocopherol and linoleic acid, serum insulin, and waist circumference predict circulating sex hormone-binding globulin in premenopausal women. J Nutr 139(6):1135–1142. doi: 10.3945/jn.108.103291 CrossRefGoogle Scholar
  29. 29.
    Chow CK (2009) Dietary beta-tocopherol and serum concentrations of sex hormone-binding globulin. J Nutr 139(10):2007. doi: 10.3945/jn.109.113571 CrossRefGoogle Scholar
  30. 30.
    Ju J, Picinich SC, Yang Z, Zhao Y, Suh N, Kong A-N, Yang CS (2010) Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis 31(4):533–542. doi: 10.1093/carcin/bgp205 CrossRefGoogle Scholar
  31. 31.
    Li G-X, Lee M-J, Liu AB, Yang Z, Lin Y, Shih WJ, Yang CS (2011) Delta-tocopherol is more active than alpha- or gamma-tocopherol in inhibiting lung tumorigenesis in vivo. Cancer Prev Res 4(3):404–413. doi: 10.1158/1940-6207.capr-10-0130 CrossRefGoogle Scholar
  32. 32.
    Yang CS, Lu G, Ju J, Li GX (2010) Inhibition of inflammation and carcinogenesis in the lung and colon by tocopherols. In: Laskin DL (ed) Oxidative/nitrosative stress and disease, vol 1203. Annals of the New York Academy of Sciences, pp 29–34. doi: 10.1111/j.1749-6632.2010.05561.x
  33. 33.
    Guan F, Li G, Liu AB, Lee M-J, Yang Z, Chen Y-K, Lin Y, Shih W, Yang CS (2012) Delta- and gamma- tocopherols, but not alpha-tocopherol, inhibit colon carcinogenesis in azoxymethane-treated F344 rats. Cancer Prev Res 5(4):644–654. doi: 10.1158/1940-6207.capr-11-0521 CrossRefGoogle Scholar
  34. 34.
    Saldeen K, Saldeen T (2005) Importance of tocopherols beyond alpha-tocopherol: evidence from animal and human studies. Nutr Res 25(10):877–889. doi: 10.1016/j.nutres.2005.09.019 CrossRefGoogle Scholar
  35. 35.
    Yang C, Suh N (2013) Cancer prevention by different forms of tocopherols. In: Pezzuto JM, Suh N (eds) Natural products in cancer prevention and therapy, vol 329. Topics in current chemistry. Springer, Berlin Heidelberg, pp 21–33. doi: 10.1007/128_2012_345 Google Scholar
  36. 36.
    Okusa K, Iwasaki Y, Kuroda I, Miwa S, Ohira M, Nagai T, Mizobe H, Gotoh N, Ikegami T, McCalley DV, Tanaka N (2014) Effect of pressure on the selectivity of polymeric C18 and C30 stationary phases in reversed-phase liquid chromatography. Increased separation of isomeric fatty acid methyl esters, triacylglycerols, and tocopherols at high pressure. J Chromatogr A 1339:86–95. doi: 10.1016/j.chroma.2014.02.077 CrossRefGoogle Scholar
  37. 37.
    Rodemeister S, Duquesne M, Adolph M, Nohr D, Biesalski HK, Unertl K (2014) Massive and long-lasting decrease in vitamin C plasma levels as a consequence of extracorporeal circulation. Nutrition 30(6):673–678. doi: 10.1016/j.nut.2013.10.026 CrossRefGoogle Scholar
  38. 38.
    Saha S, Walia S, Kundu A, Pathak N (2013) Effect of mobile phase on resolution of the isomers and homologues of tocopherols on a triacontyl stationary phase. Anal Bioanal Chem 405(28):9285–9295. doi: 10.1007/s00216-013-7336-9 CrossRefGoogle Scholar
  39. 39.
    Kand'ar R, Novotna P, Drabkova P (2013) Determination of retinol, alpha-tocopherol, lycopene, and beta- carotene in human plasma using HPLC with UV–vis detection: application to a clinical study. J Chem. doi: 10.1155/2013/460242 Google Scholar
  40. 40.
    Grebenstein N, Frank J (2012) Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver. J Chromatogr A 1243:39–46. doi: 10.1016/j.chroma.2012.04.042 CrossRefGoogle Scholar
  41. 41.
    Lee BL, New AL, Ong CN (2003) Simultaneous determination of tocotrienols, tocopherols, retinol, and major carotenoids in human plasma. Clin Chem 49(12):2056–2066. doi: 10.1373/clinchem.2003.022681 CrossRefGoogle Scholar
  42. 42.
    Morinobu T, Yoshikawa S, Hamamura K, Tamai H (2003) Measurement of vitamin E metabolites by high performance liquid chromatography during high-dose administration of alpha-tocopherol. Eur J Clin Nutr 57(3):410–414. doi: 10.1038/sj.ejcn.1601570 CrossRefGoogle Scholar
  43. 43.
    Chatzimichalakis PF, Samanidou VF, Papadoyannis IN (2004) Development of a validated liquid chromatography method for the simultaneous determination of eight fat-soluble vitamins in biological fluids after solid-phase extraction. J Chromatogr B Anal Technol Biomed Life Sci 805(2):289–296. doi: 10.1016/j.jchromb.2004.03.009 CrossRefGoogle Scholar
  44. 44.
    Aguilo A, Tauler P, Fuentespina E, Tur JA, Cordova A, Pons A (2005) Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 84(1):1–7. doi: 10.1016/j.physbeh.2004.07.034 CrossRefGoogle Scholar
  45. 45.
    Krcmova L, Urbanek L, Solichova D, Kasparova M, Vlckova H, Melichar B, Sobotka L, Solich P (2009) HPLC method for simultaneous determination of retinoids and tocopherols in human serum for monitoring of anticancer therapy. J Sep Sci 32(15–16):2804–2811. doi: 10.1002/jssc.200900239 CrossRefGoogle Scholar
  46. 46.
    Zhao Y, Lee M-J, Cheung C, Ju J-H, Chen Y-K, Liu B, Hu L-Q, Yang CS (2010) Analysis of multiple metabolites of tocopherols and tocotrienols in mice and humans. J Agric Food Chem 58(8):4844–4852. doi: 10.1021/jf904464u CrossRefGoogle Scholar
  47. 47.
    Christen S, Jiang Q, Shigenaga MK, Ames BN (2002) Analysis of plasma tocopherols alpha, gamma, and 5- nitro-gamma in rats with inflammation by HPLC coulometric detection. J Lipid Res 43(11):1978–1985. doi: 10.1194/jlr.D200023-JLR200 CrossRefGoogle Scholar
  48. 48.
    Citova I, Havlikova L, Urbanek L, Solichova D, Novakova L, Solich P (2007) Comparison of a novel ultra performance liquid chromatographic method for determination of retinol and alpha-tocopherol in human serum with conventional HPLC using monolithic and particulate columns. Anal Bioanal Chem 388(3):675–681. doi: 10.1007/s00216-007-1237-8 CrossRefGoogle Scholar
  49. 49.
    Granado-Lorencio F, Herrero-Barbudo C, Blanco-Navarro I, Perez-Sacristan B (2010) Suitability of ultra-high performance liquid chromatography for the determination of fat-soluble nutritional status (vitamins A, E, D, and individual carotenoids). Anal Bioanal Chem 397(3):1389–1393. doi: 10.1007/s00216-010-3655-2 CrossRefGoogle Scholar
  50. 50.
    Paliakov EM, Crow BS, Bishop MJ, Norton D, George J, Bralley JA (2009) Rapid quantitative determination of fat-soluble vitamins and coenzyme Q-10 in human serum by reversed phase ultra-high pressure liquid chromatography with UV detection. J Chromatogr B Anal Technol Biomed Life Sci 877(1–2):89–94. doi: 10.1016/j.jchromb.2008.11.012 CrossRefGoogle Scholar
  51. 51.
    Molto-Puigmarti C, Castellote AI, Lopez-Sabater MC (2009) Ultra-high-pressure liquid chromatographic method for the analysis of tocopherols in human colostrum and milk. J Chromatogr A 1216(20):4388–4394. doi: 10.1016/j.chroma.2009.02.088 CrossRefGoogle Scholar
  52. 52.
    Kucerova B, Krcmova L, Solichova D, Plisek J, Solich P (2013) Comparison of a new high-resolution monolithic column with core-shell and fully porous columns for the analysis of retinol and alpha-tocopherol in human serum and breast milk by ultra-high-performance liquid chromatography. J Sep Sci 36(14):2223–2230. doi: 10.1002/jssc.201300242 CrossRefGoogle Scholar
  53. 53.
    Abidin SZ (2012) Determination of vitamin E isomers in plasma using ultra performance liquid chromatography. Malays J Anal Sci 16(1):71–78Google Scholar
  54. 54.
    Ruperez FJ, Martin D, Herrera E, Barbas C (2001) Chromatographic analysis of alpha-tocopherol and related compounds in various matrices. J Chromatogr A 935(1–2):45–69. doi: 10.1016/s0021-9673(01)01101-3 CrossRefGoogle Scholar
  55. 55.
    Pyka A, Sliwoik J (2001) Chromatographic separation of tocopherols. J Chromatogr A 935(1–2):71–76. doi: 10.1016/s0021-9673(01)00944-x CrossRefGoogle Scholar
  56. 56.
    Kasparova M, Plisek J, Solichova D, Krcmova L, Kucerova B, Hronek M, Solich P (2012) Rapid sample preparation procedure for determination of retinol and alpha-tocopherol in human breast milk. Talanta 93:147–152. doi: 10.1016/j.talanta.2012.01.065 CrossRefGoogle Scholar
  57. 57.
    Plisek J, Kasparova M, Solichova D, Krcmova L, Kucerova B, Sobotka L, Solich P (2013) Application of coreshell technology for determination of retinol and alpha-tocopherol in breast milk. Talanta 107:382–388. doi: 10.1016/j.talanta.2013.01.031 CrossRefGoogle Scholar
  58. 58.
    Richheimer SL, Kent MC, Bernart MW (1994) Reversed-phase high-performance liquid-chromatographic method using a pentafluorophenyl bonded phase for analysis of tocopherols. J Chromatogr A 677(1):75–80. doi: 10.1016/0021-9673(94)80546-6 CrossRefGoogle Scholar
  59. 59.
    Capote FP, Jimenez JR, Granados JMM, de Castro MDL (2007) Identification and determination of fat soluble vitamins and metabolites in human serum by liquid chromatography/triple quadrupole mass spectrometry with multiple reaction monitoring. Rapid Commun Mass Spectrom 21(11):1745–1754. doi: 10.1002/rcm.3014 CrossRefGoogle Scholar
  60. 60.
    Montero O, Ramirez M, Sanchez-Guijo A, Gonzalez C (2012) Determination of lipoic acid, Trolox methyl ether and tocopherols in human plasma by liquid-chromatography and ion-trap tandem mass spectrometry. Biomed Chromatogr 26(10):1228–1233. doi: 10.1002/bmc.2683 CrossRefGoogle Scholar
  61. 61.
    Thibeault D, Su H, MacNamara E, Schipper HM (2009) Isocratic rapid liquid chromatographic method for simultaneous determination of carotenoids, retinol, and tocopherols in human serum. J Chromatogr B Anal Technol Biomed Life Sci 877(11–12):1077–1083. doi: 10.1016/j.jchromb.2009.02.051 CrossRefGoogle Scholar
  62. 62.
    Andreoli R, Manini P, Poli D, Bergamaschi E, Mutti A, Niessen WMA (2004) Development of a simplified method for the simultaneous determination of retinol, alpha-tocopherol, and beta-carotene in serum by liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization. Anal Bioanal Chem 378(4):987–994. doi: 10.1007/s00216-003-2288-0 CrossRefGoogle Scholar
  63. 63.
    Mata-Granados JM, de Castro MDL, Quesada JM (2004) Fully automated method for the determination of 24,25(OH)(2) and 25(OH) D-3 hydroxyvitamins, and Vitamins A and E in human serum by HPLC. J Pharm Biomed Anal 35(3):575–582. doi: 10.1016/j.jpba.2004.01.027 CrossRefGoogle Scholar
  64. 64.
    Hensley K, Williamson KS (2005) HPLC-electrochemical detection of tocopherol products as indicators of reactive nitrogen intermediates. Nitric Oxide Pt E 396:171–182. doi: 10.1016/s0076-6879(05)96017-5 Google Scholar
  65. 65.
    Podda M, Weber C, Traber MG, Packer L (1996) Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones. J Lipid Res 37(4):893–901Google Scholar
  66. 66.
    Hirowatari Y, Yoshida H, Kurosawa H, Manita D, Tada N (2014) Automated measurement method for the determination of vitamin E in plasma lipoprotein classes. Sci Rep 4. doi: 10.1038/srep04086
  67. 67.
    Vatassery GT (1994) Determination of tocopherols and tocopherolquinone in human-red blood-cell and platelet samples. Methods Enzymol 234:327–331CrossRefGoogle Scholar
  68. 68.
    Burton GW, Webb A, Ingold KU (1985) A mild, rapid, and efficient method of lipid extraction for use in determining vitamin-E lipid ratios. Lipids 20(1):29–39. doi: 10.1007/bf02534359 CrossRefGoogle Scholar
  69. 69.
    Kand'ar R, Drabkova P, Myslikova K, Hampl R (2014) Determination of retinol and alpha-tocopherol in human seminal plasma using an HPLC with UV detection. Andrologia 46(5):472–478. doi: 10.1111/and.12103 CrossRefGoogle Scholar
  70. 70.
    Rimnacova L, Husek P, Simek P (2014) A new method for immediate derivatization of hydroxyl groups by fluoroalkyl chloroformates and its application for the determination of sterols and tocopherols in human serum and amniotic fluid by gas chromatography–mass spectrometry. J Chromatogr A 1339:154–167. doi: 10.1016/j.chroma.2014.03.007 CrossRefGoogle Scholar
  71. 71.
    Romeu-Nadal M, Morera-Pons S, Castellote AI, Lopez-Sabater MC (2006) Determination of gamma- and alpha-tocopherols in human milk by a direct high-performance liquid chromatographic method with UV–vis detection and comparison with evaporative light scattering detection. J Chromatogr A 1114(1):132–137. doi: 10.1016/j.chroma.2006.02.049 CrossRefGoogle Scholar
  72. 72.
    Korchazhkina O, Jones E, Czauderna M, Spencer SA, Kowalczyk J (2006) HPLC with UV detection for measurement of vitamin E in human milk. Acta Chromatogr 16:48–57Google Scholar
  73. 73.
    Hensley K, Barnes LL, Christov A, Tangney C, Honer WG, Schneider JA, Bennett DA, Morris MC (2011) Analysis of postmortem ventricular cerebrospinal fluid from patients with and without dementia indicates association of vitamin E with neuritic plaques and specific measures of cognitive performance. J Alzheimers Dis 24(4):767–774. doi: 10.3233/jad-2011-101995 Google Scholar
  74. 74.
    de Bustos F, Jimenez-Jimenez FJ, Molina JA, Esteban J, Guerrero-Sola A, Zurdo M, Orti-Pareja M, Tallon-Barranco A, Gomez-Escalonilla C, Ramirez-Ramos C, Arenas J, de Salamanca RE (1998) Cerebrospinal fluid levels of alpha-tocopherol in amyotrophic lateral sclerosis. J Neural Transm 105(6–7):703–708. doi: 10.1007/s007020050089 CrossRefGoogle Scholar
  75. 75.
    Vatassery GT, Adityanjee QBS, Smith E, Kuskowski MA, Melnyk D (2004) Alpha and gamma tocopherols in cerebrospinal fluid and serum from older, male, human subjects. J Am Coll Nutr 23(3):233–238CrossRefGoogle Scholar
  76. 76.
    Khan A, Khan MI, Iqbal Z, Shah Y, Ahmad L, Watson DG (2010) An optimized and validated RP-HPLC/UV detection method for simultaneous determination of all-trans-retinol (Vitamin A) and alpha-tocopherol (Vitamin E) in human serum: comparison of different particulate reversed-phase HPLC columns. J Chromatogr B Anal Technol Biomed Life Sci 878(25):2339–2347. doi: 10.1016/j.jchromb.2010.07.009 CrossRefGoogle Scholar
  77. 77.
    Maccrehan WA (1990) Determination of retinol, alpha-tocopherol, and beta-carotene in serum by liquid chromatography. Methods Enzymol 189:172–181CrossRefGoogle Scholar
  78. 78.
    Demirkaya-Miloglu F, Kadioglu Y, Senol O, Yaman ME (2013) Spectrofluorimetric determination of alpha-tocopherol in capsules and human plasma. Indian J Pharm Sci 75(5):563–568Google Scholar
  79. 79.
    Liu ZY, Kang XJ, Fang F (2010) Solid phase extraction with electrospun nanofibers for determination of retinol and alpha-tocopherol in plasma. Microchim Acta 168(1–2):59–64. doi: 10.1007/s00604-009-0263-y CrossRefGoogle Scholar
  80. 80.
    Su Q, Rowley KG, O'Dea K (1999) Stability of individual carotenoids, retinol and tocopherols in human plasma during exposure to light and after extraction. J Chromatogr B 729(1–2):191–198. doi: 10.1016/s0378-4347(99)00162-0 CrossRefGoogle Scholar
  81. 81.
    Urbanek L, Solichova D, Melichar B, Dvorak J, Svobodova I, Solich P (2006) Optimization and validation of a high performance liquid chromatography method for the simultaneous determination of vitamins A and E in human serum using monolithic column and diode-array detection. Anal Chim Acta 573:267–272. doi: 10.1016/j.aca.2006.02.032 CrossRefGoogle Scholar
  82. 82.
    Siluk D, Oliveira RV, Esther-Rodriguez-Rosas M, Ling S, Bos A, Ferrucci L, Wainer IW (2007) A validated liquid chromatography method for the determination of vitamins A and E in human simultaneous plasma. J Pharm Biomed Anal 44(4):1001–1007. doi: 10.1016/j.jpba.2007.03.033 CrossRefGoogle Scholar
  83. 83.
    Franke AA, Morrison CM, Custer LJ, Li XN, Lai JF (2013) Simultaneous analysis of circulating 25-hydroxyvitamin D-3, 25-hydroxy-vitamin D-2, retinol, tocopherols, carotenoids, and oxidized and reduced coenzyme Q10 by high performance liquid chromatography with photo diode-array detection using C18 and C30 columns alone or in combination. J Chromatogr A 1301:1–9. doi: 10.1016/j.chroma.2013.05.027 CrossRefGoogle Scholar
  84. 84.
    Deleenheer AP, Debevere V, Claeys AE (1979) Measurement of alpha-tocopherol, beta-tocopherol and gamma-tocopherol in serum by liquid-chromatography. Clin Chem 25(3):425–428Google Scholar
  85. 85.
    Vagni S, Saccone F, Pinotti L, Baldi A (2011) Vitamin E bioavailability: past and present insights. Food Nutr Sci 2(10):1088–1096. doi: 10.4236/fns.2011.210146 CrossRefGoogle Scholar
  86. 86.
    Sirimanne SR, Patterson DG, Ma L, Justice JB (1998) Application of cloud-point extraction-reversed-phase high-performance liquid chromatography - a preliminary study of the extraction and quantification of vitamins A and E in human serum and whole blood. J Chromatogr B 716(1–2):129–137. doi: 10.1016/s0378-4347(98)00287-4 CrossRefGoogle Scholar
  87. 87.
    Plisek J, Pospichalova N, Khalikova M, Aufartova J, Solichova D, Krcmova LK, Solich P (2015) Combination of ultracentrifugation and solid-phase extraction with subsequent chromatographic analysis of alpha-tocopherol in erythrocyte membranes. J Sep Sci 38(4):634–640. doi: 10.1002/jssc.201401036 CrossRefGoogle Scholar
  88. 88.
    Krcmova L, Solichova D, Plisek J, Kasparova M, Sobotka L, Solich P (2010) Miniaturisation of solid phase extraction method for determination of retinol, alpha- and gamma-tocopherol in human serum using new technologies. Int J Environ Anal Chem 90(2):106–114. doi: 10.1080/03067310903267299 CrossRefGoogle Scholar
  89. 89.
    Melchert HU, Pabel E (2000) Quantitative determination of alpha-, beta-, gamma- and delta-tocopherols in human serum by high-performance liquid chromatography and gas chromatography–mass spectrometry as trimethylsilyl derivatives with a two-step sample preparation. J Chromatogr A 896(1–2):209–215. doi: 10.1016/s0021-9673(00)00682-8 CrossRefGoogle Scholar
  90. 90.
    Mata-Granados JM, Gomez JMQ, de Castro MDL (2009) Fully automatic method for the determination of fat soluble vitamins and vitamin D metabolites in serum. Clin Chim Acta 403(1–2):126–130. doi: 10.1016/j.cca.2009.01.029 CrossRefGoogle Scholar
  91. 91.
    Semeraro A, Altieri I, Patriarca M, Menditto A (2009) Evaluation of uncertainty of measurement from method validation data: an application to the simultaneous determination of retinol and alpha-tocopherol in human serum by HPLC. J Chromatogr B Anal Technol Biomed Life Sci 877(11–12):1209–1215. doi: 10.1016/j.jchromb.2009.02.063 CrossRefGoogle Scholar
  92. 92.
    Almeshari AA, Aleem MA (1991) Separation of beta-tocopherol and gamma-tocopherol in serum by high performance liquid-chromatography. Biomed Chromatogr 5(2):83–85. doi: 10.1002/bmc.1130050208 CrossRefGoogle Scholar
  93. 93.
    Strohschein S, Pursch M, Lubda D, Albert K (1998) Shape selectivity of C-30 phases for RP-HPLC separation of tocopherol isomers and correlation with MAS NMR data from suspended stationary phases. Anal Chem 70(1):13–18. doi: 10.1021/ac970414j CrossRefGoogle Scholar
  94. 94.
    Elisia I, Kitts DD (2011) Quantification of hexanal as an index of lipid oxidation in human milk and association with antioxidant components. J Clin Biochem Nutr 49(3):147–152. doi: 10.3164/jcbn.10-142 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Barbora Cervinkova
    • 1
    • 2
  • Lenka Kujovska Krcmova
    • 1
    • 2
  • Dagmar Solichova
    • 2
  • Bohuslav Melichar
    • 3
  • Petr Solich
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of PharmacyCharles University in PragueHradec KraloveCzech Republic
  2. 2.3rd Internal Gerontometabolic ClinicUniversity HospitalHradec KraloveCzech Republic
  3. 3.Department of Oncology, Faculty of Medicine and Dentistry and University HospitalPalacky UniversityOlomoucCzech Republic

Personalised recommendations