Analytical and Bioanalytical Chemistry

, Volume 408, Issue 2, pp 567–578 | Cite as

Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity

  • Helena Pelantová
  • Simona Bártová
  • Jiří Anýž
  • Martina Holubová
  • Blanka Železná
  • Lenka Maletínská
  • Daniel Novák
  • Zdena Lacinová
  • Miroslav Šulc
  • Martin Haluzík
  • Marek KuzmaEmail author
Research Paper


Obesity with related complications represents a widespread health problem. The etiopathogenesis of obesity is often studied using numerous rodent models. The mouse model of monosodium glutamate (MSG)-induced obesity was exploited as a model of obesity combined with insulin resistance. The aim of this work was to characterize the metabolic status of MSG mice by NMR-based metabolomics in combination with relevant biochemical and hormonal parameters. NMR analysis of urine at 2, 6, and 9 months revealed altered metabolism of nicotinamide and polyamines, attenuated excretion of major urinary proteins, increased levels of phenylacetylglycine and allantoin, and decreased concentrations of methylamine in urine of MSG-treated mice. Altered levels of creatine, citrate, succinate, and acetate were observed at 2 months of age and approached the values of control mice with aging. The development of obesity and insulin resistance in 6-month-old MSG mice was also accompanied by decreased mRNA expressions of adiponectin, lipogenetic and lipolytic enzymes and peroxisome proliferator-activated receptor-gamma in fat while mRNA expressions of lipogenetic enzymes in the liver were enhanced. At the age of 9 months, biochemical parameters of MSG mice were normalized to the values of the controls. This fact pointed to a limited predictive value of biochemical data up to age of 6 months as NMR metabolomics confirmed altered urine metabolic composition even at 9 months.


Mouse model Monosodium glutamate (MSG) induced obesity Diabetes NMR Metabolomics Urine 



We are indebted to H. Vysušilová for her excellent technical assistance.

Compliance with ethical standards


The research was financially supported by the Czech Science Foundation (Grant No. GA13-14105S), grant for long-term conceptual development of the Institute of Microbiology (RVO: 61388971) and Institute of Organic Chemistry and Biochemistry (RVO: 61388963). The project was conducted within the “Prague Infrastructure for Structure Biology and Metabolomics” which has been built up by financial support of the Operational Program Prague – Competitiveness (Project No.: CZ.2.16/3.1.00/24023). The data analyses were partially supported by the Grant Agency of the Czech Technical University in Prague No. SGS13/203/OHK3/3T/13. We would also like to acknowledge project LO1509 of the Ministry of Education, Youth and Sports of the Czech Republic.

Conflict of interest

Helena Pelantová, Simona Bártová, Jiří Anýž, Martina Holubová, Blanka Železná, Lenka Maletínská, Daniel Novák, Zdena Lacinová, Miroslav Šulc, Martin Haluzík, and Marek Kuzma declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Supplementary material

216_2015_9133_MOESM1_ESM.pdf (597 kb)
ESM 1 (PDF 596 kb)


  1. 1.
    Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21:1443–1455. doi: 10.1101/gad.1550907 CrossRefGoogle Scholar
  2. 2.
    Chen P, Liu J (2007) Metabonomics and diabetes mellitus. Adv Ther 24:1036–1045. doi: 10.1007/BF02877709 CrossRefGoogle Scholar
  3. 3.
    Faber JH, Malmodin D, Toft H, Maher AD, Crockford D, Holmes E, Nicholson JK, Dumas ME, Baunsgaard D (2007) Metabonomics in diabetes research. J Diabetes Sci Technol 1:549–557CrossRefGoogle Scholar
  4. 4.
    Bain JR, Stevens RD, Wenner BR, Ilkayeva O, Muoio DM, Newgard CB (2009) Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes 58:2429–2443. doi: 10.2337/db09-0580 CrossRefGoogle Scholar
  5. 5.
    Lutz TA, Woods SC (2012) Overview of animal models of obesity. Curr Protoc Pharmacol Chapter 5:Unit5.61. doi: 10.1002/0471141755.ph0561s58
  6. 6.
    Carroll L, Voisey J, van Daal A (2004) Mouse models of obesity. Clin Dermatol 22:345–349. doi: 10.1016/j.clindermatol.2004.01.004 CrossRefGoogle Scholar
  7. 7.
    Katsuda Y, Ohta T, Shinohara M, Bin T, Yamada T (2013) Diabetic mouse models. Open J Anim Sci 03:334–342. doi: 10.4236/ojas.2013.34050 CrossRefGoogle Scholar
  8. 8.
    Kim IY, Jung J, Jang M, Ahn YG, Shin JH, Choi JW, Sohn MR, Shin SM, Kang D-G, Lee H-S, Bae YS, Ryu DH, Seong JK, Hwang G-S (2010) 1H NMR-based metabolomic study on resistance to diet-induced obesity in AHNAK knock-out mice. Biochem Biophys Res Commun 403:428–434. doi: 10.1016/j.bbrc.2010.11.048 CrossRefGoogle Scholar
  9. 9.
    Boulangé CL, Claus SP, Chou CJ, Collino S, Montoliu I, Kochhar S, Holmes E, Rezzi S, Nicholson JK, Dumas ME, Martin F-PJ (2013) Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways. J Proteome Res 12:1956–1968. doi: 10.1021/pr400051s CrossRefGoogle Scholar
  10. 10.
    Shearer J, Duggan G, Weljie A, Hittel DS, Wasserman DH, Vogel HJ (2008) Metabolomic profiling of dietary-induced insulin resistance in the high fat-fed C57BL/6J mouse. Diabetes Obes Metab 10:950–958. doi: 10.1111/j.1463-1326.2007.00837.x CrossRefGoogle Scholar
  11. 11.
    Duggan GE, Hittel DS, Sensen CW, Weljie AM, Vogel HJ, Shearer J (2011) Metabolomic response to exercise training in lean and diet-induced obese mice. J Appl Physiol 110:1311–1318. doi: 10.1152/japplphysiol.00701.2010 CrossRefGoogle Scholar
  12. 12.
    Jung J, Kim IY, Kim YN, Kim J, Shin JH, Jang Z, Lee H-S, Hwang G-S, Seong JK (2012) H-1 NMR-based metabolite profiling of diet-induced obesity in a mouse mode. BMB Rep 45:419–424. doi: 10.5483/BMBRep.2012.45.7.248 CrossRefGoogle Scholar
  13. 13.
    Graham ML, Janecek JL, Kittredge JA, Hering BJ, Schuurman H-J (2011) The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp Med 61:356–360Google Scholar
  14. 14.
    Bunyan J, Murrell EA, Shah PP (2008) The induction of obesity in rodents by means of monosodium glutamate. Br J Nutr 35:25. doi: 10.1079/BJN19760005 CrossRefGoogle Scholar
  15. 15.
    Nagata M, Suzuki W, Iizuka S, Tabuchi M, Maruyama H, Takeda S, Aburada M, Miyamoto K (2006) Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp Anim 55:109–115CrossRefGoogle Scholar
  16. 16.
    Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721. doi: 10.1126/science.164.3880.719 CrossRefGoogle Scholar
  17. 17.
    Broberger C, De Lecea L, Sutcliffe JG, Hökfelt T (1998) Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol 402:460–474. doi: 10.1002/(SICI)1096-9861(19981228)402:4<460::AID-CNE3>3.0.CO;2-S CrossRefGoogle Scholar
  18. 18.
    Elefteriou F, Takeda S, Liu X, Armstrong D, Karsenty G (2003) Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass. Endocrinology 144:3842–3847. doi: 10.1210/en.2003-0369 CrossRefGoogle Scholar
  19. 19.
    Zelezná B, Maixnerová J, Matysková R, Haugvicová R, Blokesová D, Maletínská L (2009) Anorexigenic effect of cholecystokinin is lost but that of CART (Cocaine and Amphetamine Regulated Transcript) peptide is preserved in monosodium glutamate obese mice. Physiol Res 58:717–723Google Scholar
  20. 20.
    Edelstein K, Pfaus JG, Rusak B, Amir S (1995) Neonatal monosodium glutamate treatment prevents effects of constant light on circadian temperature rhythms of adult rats. Brain Res 675:135–142. doi: 10.1016/0006-8993(95)00048-U CrossRefGoogle Scholar
  21. 21.
    Mistlberger RE, Antle MC (1999) Neonatal monosodium glutamate alters circadian organization of feeding, food anticipatory activity and photic masking in the rat. Brain Res 842:73–83. doi: 10.1016/S0006-8993(99)01836-3 CrossRefGoogle Scholar
  22. 22.
    Djazayery A, Miller DS, Stock MJ (1979) Energy balances in obese mice. Ann Nutr Metab 23:357–367. doi: 10.1159/000176281 CrossRefGoogle Scholar
  23. 23.
    Maletínská L, Toma RS, Pirnik Z, Kiss A, Slaninová J, Haluzík M, Zelezná B (2006) Effect of cholecystokinin on feeding is attenuated in monosodium glutamate obese mice. Regul Pept 136:58–63. doi: 10.1016/j.regpep.2006.04.020 CrossRefGoogle Scholar
  24. 24.
    Remke H, Wilsdorf A, Müller F (1988) Development of hypothalamic obesity in growing rats. Exp Pathol 33:223–232. doi: 10.1016/S0232-1513(88)80076-8 CrossRefGoogle Scholar
  25. 25.
    Matyšková R, Maletínská L, Maixnerová J, Pirník Z, Kiss A, Železná B (2008) Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in C57BL/6 and NMRI mice. Physiol Res 57:727–734Google Scholar
  26. 26.
    Hernández-Bautista RJ, Alarcón-Aguilar FJ, Del C, Escobar-Villanueva M, Almanza-Pérez JC, Merino-Aguilar H, Fainstein MK, López-Diazguerrero NE (2014) Biochemical alterations during the obese-aging process in female and male monosodium glutamate (MSG)-treated mice. Int J Mol Sci 15:11473–11494. doi: 10.3390/ijms150711473 CrossRefGoogle Scholar
  27. 27.
    Roman-Ramos R, Almanza-Perez JC, Garcia-Macedo R, Blancas-Flores G, Fortis-Barrera A, Jasso EI, Garcia-Lorenzana M, Campos-Sepulveda AE, Cruz M, Alarcon-Aguilar FJ (2011) Monosodium glutamate neonatal intoxication associated with obesity in adult stage is characterized by chronic inflammation and increased mRNA expression of peroxisome proliferator-activated receptors in mice. Basic Clin Pharmacol Toxicol 108:406–413. doi: 10.1111/j.1742-7843.2011.00671.x CrossRefGoogle Scholar
  28. 28.
    Maletínská L, Matyšková R, Maixnerová J, Sýkora D, Pýchová M, Spolcová A, Blechová M, Drápalová J, Lacinová Z, Haluzík M, Zelezná B (2011) The Peptidic GHS-R antagonist [D-Lys(3)]GHRP-6 markedly improves adiposity and related metabolic abnormalities in a mouse model of postmenopausal obesity. Mol Cell Endocrinol 343:55–62. doi: 10.1016/j.mce.2011.06.006 CrossRefGoogle Scholar
  29. 29.
    Wiechelman KJ, Braun RD, Fitzpatrick JD (1988) Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem 175:231–237CrossRefGoogle Scholar
  30. 30.
    (2013) MATLAB version (R2013a). Natick, Massachusetts: The MathWorks IncGoogle Scholar
  31. 31.
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130. doi: 10.1016/S0169-7439(01)00155-1 CrossRefGoogle Scholar
  32. 32.
    Zhou Y, Jiang L, Rui L (2009) Identification of MUP1 as a regulator for glucose and lipid metabolism in mice. J Biol Chem 284:11152–11159. doi: 10.1074/jbc.M900754200 CrossRefGoogle Scholar
  33. 33.
    Zhou Y, Rui L (2010) Major urinary protein regulation of chemical communication and nutrient metabolism. In: Litwack G (ed) Vitamins and hormones 1st ed., Vol. 83. Elsevier, Amsterdam, pp 151–163. doi: 10.1016/S0083-6729(10)83006-7 Google Scholar
  34. 34.
    Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, Nunez D, Sweatman BC, Haselden JN, Cox RD, Connor SC, Griffin JL (2007) A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 29:99–108. doi: 10.1152/physiolgenomics.00194.2006 CrossRefGoogle Scholar
  35. 35.
    Ringeissen S, Connor SC, Brown HR, Sweatman BC, Hodson MP, Kenny SP, Haworth RI, McGill P, Price MA, Aylott MC, Nunez DJ, Haselden JN, Waterfield CJ (2003) Potential urinary and plasma biomarkers of peroxisome proliferation in the rat: identification of N-methylnicotinamide and N-methyl-4-pyridone-3-carboxamide by 1H nuclear magnetic resonance and high performance liquid chromatography. Biomarkers 8:240–271. doi: 10.1080/1354750031000149124 CrossRefGoogle Scholar
  36. 36.
    Delaney J, Hodson MP, Thakkar H, Connor SC, Sweatman BC, Kenny SP, McGill PJ, Holder JC, Hutton KA, Haselden JN, Waterfield CJ (2005) Tryptophan-NAD+ pathway metabolites as putative biomarkers and predictors of peroxisome proliferation. Arch Toxicol 79:208–223. doi: 10.1007/s00204-004-0625-5 CrossRefGoogle Scholar
  37. 37.
    Kersten S (2002) Peroxisome proliferator activated receptors and obesity. Eur J Pharmacol 440:223–234. doi: 10.1016/S0014-2999(02)01431-0 CrossRefGoogle Scholar
  38. 38.
    Stienstra R, Mandard S, Patsouris D, Maass C, Kersten S, Müller M (2007) Peroxisome proliferator-activated receptor alpha protects against obesity-induced hepatic inflammation. Endocrinology 148:2753–2763. doi: 10.1210/en.2007-0014 CrossRefGoogle Scholar
  39. 39.
    Pirinen E, Kuulasmaa T, Pietilä M, Heikkinen S, Tusa M, Itkonen P, Boman S, Skommer J, Virkamäki A, Hohtola E, Kettunen M, Fatrai S, Kansanen E, Koota S, Niiranen K, Parkkinen J, Levonen A-L, Ylä-Herttuala S, Hiltunen JK, Alhonen L, Smith U, Jänne J, Laakso M (2007) Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism. Mol Cell Biol 27:4953–4967. doi: 10.1128/MCB.02034-06 CrossRefGoogle Scholar
  40. 40.
    Jell J, Merali S, Hensen ML, Mazurchuk R, Spernyak JA, Diegelman P, Kisiel ND, Barrero C, Deeb KK, Alhonen L, Patel MS, Porter CW (2007) Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J Biol Chem 282:8404–8413. doi: 10.1074/jbc.M610265200 CrossRefGoogle Scholar
  41. 41.
    Grubb SC, Maddatu TP, Bult CJ, Bogue MA (2009) Mouse phenome database. Nucleic Acids Res 37:D720–D730. doi: 10.1093/nar/gkn778 CrossRefGoogle Scholar
  42. 42.
    Kraus D, Yang Q, Kong D, Banks AS, Zhang L, Rodgers JT, Pirinen E, Pulinilkunnil TC, Gong F, Wang Y, Cen Y, Sauve AA, Asara JM, Peroni OD, Monia BP, Bhanot S, Alhonen L, Puigserver P, Kahn BB (2014) Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508:258–262. doi: 10.1038/nature13198 CrossRefGoogle Scholar
  43. 43.
    Beynon RJ, Hurst JL (2004) Urinary proteins and the modulation of chemical scents in mice and rats. Peptides 25:1553–1563. doi: 10.1016/j.peptides.2003.12.025 CrossRefGoogle Scholar
  44. 44.
    Hui X, Zhu W, Wang Y, Lam KSL, Zhang J, Wu D, Kraegen EW, Li Y, Xu A (2009) Major urinary protein-1 increases energy expenditure and improves glucose intolerance through enhancing mitochondrial function in skeletal muscle of diabetic mice. J Biol Chem 284:14050–14057. doi: 10.1074/jbc.M109.001107 CrossRefGoogle Scholar
  45. 45.
    Giller K, Huebbe P, Doering F, Pallauf K, Rimbach G (2013) Major urinary protein 5, a scent communication protein, is regulated by dietary restriction and subsequent re-feeding in mice. Proc Biol Sci 280:20130101. doi: 10.1098/rspb.2013.0101 CrossRefGoogle Scholar
  46. 46.
    Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK (2011) Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol 19:349–359. doi: 10.1016/j.tim.2011.05.006 CrossRefGoogle Scholar
  47. 47.
    Kim S-H, Yang S-O, Kim H-S, Kim Y, Park T, Choi H-K (2009) 1H-nuclear magnetic resonance spectroscopy-based metabolic assessment in a rat model of obesity induced by a high-fat diet. Anal Bioanal Chem 395:1117–1124. doi: 10.1007/s00216-009-3054-8 CrossRefGoogle Scholar
  48. 48.
    Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Gallup D, Ilkayeva O, Wenner BR, Yancy WE, Musante G, Surwit R, Millington DS, Butler MD, Laura P (2013) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326. doi: 10.1016/j.cmet.2009.02.002.A CrossRefGoogle Scholar
  49. 49.
    Chung W-Y, Benzie IFF (2013) Plasma allantoin measurement by isocratic liquid chromatography with tandem mass spectrometry: method evaluation and application in oxidative stress biomonitoring. Clin Chim Acta 424:237–244. doi: 10.1016/j.cca.2013.06.015 CrossRefGoogle Scholar
  50. 50.
    Kand’ár R, Záková P (2008) Allantoin as a marker of oxidative stress in human erythrocytes. Clin Chem Lab Med 46:1270–1274. doi: 10.1515/CCLM.2008.244 Google Scholar
  51. 51.
    Yardim-Akaydin S, Sepici A, Ozkan Y, Simşek B, Sepici V. Evaluation of allantoin levels as a new marker of oxidative stress in Behçet’s disease. Scand J Rheumatol 35:61–64. doi: 10.1080/03009740510026878
  52. 52.
    Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. doi: 10.1016/j.diabres.2014.04.006 Google Scholar
  53. 53.
    Serkova N, Fuller TF, Klawitter J, Freise CE, Niemann CU (2005) H-NMR-based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney Int 67:1142–1151. doi: 10.1111/j.1523-1755.2005.00181.x CrossRefGoogle Scholar
  54. 54.
    Fukuhara K, Ohno A, Ota Y, Senoo Y, Maekawa K, Okuda H, Kurihara M, Okuno A, Niida S, Saito Y, Takikawa O (2013) NMR-based metabolomics of urine in a mouse model of Alzheimer’s disease: identification of oxidative stress biomarkers. J Clin Biochem Nutr 52:133–138. doi: 10.3164/jcbn.12-118 CrossRefGoogle Scholar
  55. 55.
    Leo GC, Darrow AL (2009) NMR-based metabolomics of urine for the atherosclerotic mouse model using apolipoprotein-E deficient mice. Magn Reson Chem 47(Suppl 1):S20–S25. doi: 10.1002/mrc.2470 CrossRefGoogle Scholar
  56. 56.
    Dryland PA, Love DR, Walker MF, Dommels Y, Rowan D, Roy NC, Helsby N, Browning BL, Zhu S, Copp BR, Ferguson LR (2008) Allantoin as a biomarker of inflammation in an inflammatory bowel disease mouse model: NMR analysis of urine. Open Bioact Compd J 1:1–6CrossRefGoogle Scholar
  57. 57.
    Chung H-H, Lee KS, Cheng J-T (2013) Decrease of obesity by allantoin via imidazoline I 1 -receptor activation in high fat diet-fed mice. Evid Based Complement Alternat Med 2013:589309. doi: 10.1155/2013/589309 Google Scholar
  58. 58.
    Calvani R, Brasili E, Praticò G, Capuani G, Tomassini A, Marini F, Sciubba F, Finamore A, Roselli M, Marzetti E, Miccheli A (2014) Fecal and urinary NMR-based metabolomics unveil an aging signature in mice. Exp Gerontol 49:5–11. doi: 10.1016/j.exger.2013.10.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Helena Pelantová
    • 1
    • 2
  • Simona Bártová
    • 1
    • 3
  • Jiří Anýž
    • 4
  • Martina Holubová
    • 5
  • Blanka Železná
    • 5
  • Lenka Maletínská
    • 5
  • Daniel Novák
    • 4
  • Zdena Lacinová
    • 6
  • Miroslav Šulc
    • 1
  • Martin Haluzík
    • 6
  • Marek Kuzma
    • 1
    Email author
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Department of Analytical Chemistry, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  3. 3.Department of Analytical ChemistryUniversity of Chemistry and Technology PraguePrague 6Czech Republic
  4. 4.Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in PraguePrague 6Czech Republic
  5. 5.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  6. 6.3rd Medical Department, 1st Faculty of MedicineCharles University and General Faculty Hospital in PraguePrague 2Czech Republic

Personalised recommendations