Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 2, pp 557–566 | Cite as

Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots

  • Jiajia Guo
  • Ying Li
  • Luokai Wang
  • Jingyue Xu
  • Yanjun Huang
  • Yeli Luo
  • Fei Shen
  • Chunyan SunEmail author
  • Rizeng Meng
Research Paper

Abstract

This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 μM, and a low detection limit of 7.29 nM (3σ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples.

Graphical Abstract

Keywords

Inner filter effect Aptamer CdTe quantum dots Gold nanoparticles Acetamiprid 

Notes

Acknowledgments

This work was financially supported by the Graduate Student Innovation Research Project of Jilin University (no. 2014071), the Natural Science Foundation of Jilin Province (no. 201215024), and the Excellent Youth Talent Cultivation Project of Heping Campus of Jilin University.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2015_9132_MOESM1_ESM.pdf (236 kb)
ESM 1 (PDF 235 kb)

References

  1. 1.
    Fan LF, Zhao GH, Shi HJ, Liu MC, Li ZX (2013) Biosens Bioelectron 43:12–18CrossRefGoogle Scholar
  2. 2.
    Shi HJ, Zhao GH, Liu MC, Fan LF, Cao TC (2013) J Hazard Mater 260:754–761CrossRefGoogle Scholar
  3. 3.
    Imamura T, Yanagawa Y, Nishikawa K, Matsumoto N, Sakamoto T (2010) Clin Toxicol 48:851–853CrossRefGoogle Scholar
  4. 4.
    Kocaman AY, Topaktas M (2007) Environ Mol Mutagen 48:483–490CrossRefGoogle Scholar
  5. 5.
    Obana H, Okihashi M, Akutsu K, Kitagawa Y, Hori S (2002) J Agric Food Chem 50:4464–4467CrossRefGoogle Scholar
  6. 6.
    Zhou QX, Ding YJ, Xiao JP (2006) Anal Bioanal Chem 385:1520–1525CrossRefGoogle Scholar
  7. 7.
    Mohan C, Kumar Y, Madan J, Saxena N (2010) Environ Monit Assess 165:573–576CrossRefGoogle Scholar
  8. 8.
    Vichapong J, Burakham R, Srijaranai S (2013) Talanta 117:221–228CrossRefGoogle Scholar
  9. 9.
    Seccia S, Fidente P, Montesano D, Morrica P (2008) J Chromatogr A 1214:115–120CrossRefGoogle Scholar
  10. 10.
    Zhang BH, Pan XP, Venne L, Dunnum S, McMurry ST, Cobb GP, Anderson TA (2008) Talanta 75:1055–1060CrossRefGoogle Scholar
  11. 11.
    Obana H, Okihashi M, Akutsu K, Kitagawa Y, Hori S (2003) J Agric Food Chem 51:2501–2505CrossRefGoogle Scholar
  12. 12.
    Radišić M, Grujić S, Vasiljević T, Laušević M (2009) Food Chem 113:712–719CrossRefGoogle Scholar
  13. 13.
    Xie W, Han C, Qian Y, Ding HY, Chen XM, Xi JY (2011) J Chromatogr A 1218:4426–4433CrossRefGoogle Scholar
  14. 14.
    Liu SY, Zheng ZT, Wei FL, Ren YP, Gui WJ, Wu HM, Zhu GN (2010) J Agric Food Chem 58:3271–3278CrossRefGoogle Scholar
  15. 15.
    Mateu-Sánchez M, Moreno M, Arrebola FJ, Vidal JLM (2003) Anal Sci 19:701–704CrossRefGoogle Scholar
  16. 16.
    Ettiene G, Bauza R, Plata MR, Contento AM, Ríos Á (2012) Electrophoresis 33:2969–2977CrossRefGoogle Scholar
  17. 17.
    Zhang SH, Yang XM, Yin XF, Wang C, Wang Z (2012) Food Chem 133:544–550CrossRefGoogle Scholar
  18. 18.
    Wanatabe S, Ito S, Kamata Y, Omoda N, Yamazaki T, Munakata H, Kaneko T, Yuasa Y (2001) Anal Chim Acta 427:211–219CrossRefGoogle Scholar
  19. 19.
    Watanabe E, Miyake S, Baba K, Eun H, Endo S (2006) Anal Bioanal Chem 386:1441–1448CrossRefGoogle Scholar
  20. 20.
    Yuan P, Walt DR (1987) Anal Chem 59:2391–2394CrossRefGoogle Scholar
  21. 21.
    Xiang Y, Li Z, Chen X, Tong A (2008) Talanta 74:1148–1153CrossRefGoogle Scholar
  22. 22.
    Ling J, Huang CZ (2010) Anal Methods 2:1439–1447CrossRefGoogle Scholar
  23. 23.
    Tang B, Cao LH, Xu KH, Zhuo LH, Ge JH, Li QF, Yu LJ (2008) Chem Eur J 14:3637–3644CrossRefGoogle Scholar
  24. 24.
    Zhang MW, Cao XY, Li HK, Guan FR, Guo JJ, Shen F, Luo YL, Sun CY, Zhang LG (2012) Food Chem 135:1894–1900CrossRefGoogle Scholar
  25. 25.
    Li JW, Li XM, Shi XJ, He XW, Wei W, Ma N, Chen H (2013) Appl Mater Interfaces 5:9798–9802CrossRefGoogle Scholar
  26. 26.
    Sabherwal P, Shorie M, Pathania P, Chaudhary S, Bhasin KK, Bhalla V, Suri CR (2014) Anal Chem 86:7200–7204CrossRefGoogle Scholar
  27. 27.
    Mairal T, Nadal P, Svobodova M, O'Sullivan CK (2014) Biosens Bioelectron 54:207–210CrossRefGoogle Scholar
  28. 28.
    Xu H, Mao X, Zeng QX, Wang SF, Kawde AN, Liu GD (2009) Anal Chem 81:669–675CrossRefGoogle Scholar
  29. 29.
    Kopra K, Syrjanpaa M, Hanninen P, Harma H (2014) Analyst 139:2016–2023CrossRefGoogle Scholar
  30. 30.
    Lin CX, Katilius E, Liu Y, Zhang JP, Yan H (2006) Angew Chem Int Ed 45:5296–5301CrossRefGoogle Scholar
  31. 31.
    Wang LH, Liu XF, Hu XF, Song SP, Fan CH (2006) Chem Commun 36:3780–3782CrossRefGoogle Scholar
  32. 32.
    Stojanovic MN, Landry DW (2002) J Am Chem Soc 124:9678–9679CrossRefGoogle Scholar
  33. 33.
    Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB (2007) Biosens Bioelectron 22:2525–2531CrossRefGoogle Scholar
  34. 34.
    Wang Y, Li ZH, Hu DH, Lin CT, Li JH, Lin YH (2010) J Am Chem Soc 132:9274–9276CrossRefGoogle Scholar
  35. 35.
    Lin FB, Yin BD, Li CZ, Deng JH, Fan XY, Yi YH, Liu C, Li HT, Zhang YY, Yao SZ (2013) Anal Methods 5:699–704CrossRefGoogle Scholar
  36. 36.
    He J, Liu Y, Fan MT, Liu XJ (2011) J Agric Food Chem 59:1582–1586CrossRefGoogle Scholar
  37. 37.
    Chinese National Standards GB/T 5009.199-2003, Standards Press of China: Beijing, 2003Google Scholar
  38. 38.
    Li HX, Rothberg L (2004) J Am Chem Soc 126:10958–10961CrossRefGoogle Scholar
  39. 39.
    Zheng Y, Wang Y, Yang XR (2011) Sensors Actuators B 56:95–99CrossRefGoogle Scholar
  40. 40.
    Jiang X, Shang L, Wang ZX, Dong SJ (2005) Biophys Chem 118:42–50CrossRefGoogle Scholar
  41. 41.
    Sun YH, Fan W, Jia Q, Shi C, Li T, Yang D (2011) Shanxi Agric Sci [Chinese journal] 6:104–106Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jiajia Guo
    • 1
  • Ying Li
    • 1
  • Luokai Wang
    • 1
  • Jingyue Xu
    • 1
  • Yanjun Huang
    • 2
  • Yeli Luo
    • 1
  • Fei Shen
    • 1
  • Chunyan Sun
    • 1
    Email author
  • Rizeng Meng
    • 3
    • 4
  1. 1.Department of Food Quality and SafetyJilin UniversityChangchunChina
  2. 2.Laboratory of Nutrition and Functional FoodJilin UniversityChangchunChina
  3. 3.Public Health CollegeJilin UniversityChangchunChina
  4. 4.Jilin Entry-Exit Inspection and Quarantine BureauChangchunChina

Personalised recommendations