Analytical and Bioanalytical Chemistry

, Volume 408, Issue 7, pp 1773–1781 | Cite as

Plasmonic SERS biosensing nanochips for DNA detection

  • Hoan T. Ngo
  • Hsin-Neng Wang
  • Andrew M. Fales
  • Tuan Vo-Dinh
Part of the following topical collections:
  1. Analytical Applications of Biomimetic Recognition Elements


The development of rapid, cost-effective DNA detection methods for molecular diagnostics at the point-of-care (POC) has been receiving increasing interest. This article reviews several DNA detection techniques based on plasmonic-active nanochip platforms developed in our laboratory over the last 5 years, including the molecular sentinel-on-chip (MSC), the multiplex MSC, and the inverse molecular sentinel-on-chip (iMS-on-Chip). DNA probes were used as the recognition elements, and surface-enhanced Raman scattering (SERS) was used as the signal detection method. Sensing mechanisms were based on hybridization of target sequences and DNA probes, resulting in a distance change between SERS reporters and the nanochip’s plasmonic-active surface. As the field intensity of the surface plasmon decays exponentially as a function of distance, the distance change in turn affects SERS signal intensity, thus indicating the presence and capture of the target sequences. Our techniques were single-step DNA detection techniques. Target sequences were detected by simple delivery of sample solutions onto DNA probe-functionalized nanochips and measuring the SERS signal after appropriate incubation times. Target sequence labeling or washing to remove unreacted components was not required, making the techniques simple, easy-to-use, and cost-effective. The usefulness of the nanochip platform-based techniques for medical diagnostics was illustrated by the detection of host genetic biomarkers for respiratory viral infection and of the dengue virus gene.


DNA detection Multiplex DNA detection DNA biosensor Surface-enhanced Raman scattering Molecular sentinel-on-chip 



This work was sponsored by the Duke Faculty Exploratory Research Fund, the Defense Advanced Research Projects Agency (HR0011-13-2-0003), the Department of Energy (DE-SC0014077), and the Wallace H. Coulter Foundation Endowment. Hoan Thanh Ngo is supported by Fellowships from the Vietnam Education Foundation and the Fitzpatrick Foundation. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.

Compliance with ethical stndards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, Polis M, Dewar RL, Planta A, Liu SY, Metcalf JA, Mellors JW, Coffin JM (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41(10):4531–4536CrossRefGoogle Scholar
  2. 2.
    Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29(5):240–250CrossRefGoogle Scholar
  3. 3.
    Park S, Zhang Y, Lin S, Wang TH, Yang S (2011) Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 29(6):830–839CrossRefGoogle Scholar
  4. 4.
    Feuillie C, Merheb MM, Gillet B, Montagnac G, Daniel I, Hanni C (2011) A novel SERRS sandwich-hybridization assay to detect specific DNA target. PLoS One 6(5), e17847CrossRefGoogle Scholar
  5. 5.
    Longo MC, Berninger MS, Hartley JL (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain-reactions. Gene 93(1):125–128CrossRefGoogle Scholar
  6. 6.
    Bessetti J (2007) An introduction to PCR inhibitors. Profiles in DNA 10(1):9–10Google Scholar
  7. 7.
    Jiang L, Mancuso M, Lu Z, Akar G, Cesarman E, Erickson D (2014) Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics. Sci Rep 4:4137Google Scholar
  8. 8.
    Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134CrossRefGoogle Scholar
  9. 9.
    Chang CM, Chang WH, Wang CH, Wang JH, Mai JD, Lee GB (2013) Nucleic acid amplification using microfluidic systems. Lab Chip 13(7):1225–1242CrossRefGoogle Scholar
  10. 10.
    Culbertson CT, Mickleburgh TG, Stewart-James SA, Sellens KA, Pressnall M (2014) Micro total analysis systems: fundamental advances and biological applications. Anal Chem 86(1):95–118CrossRefGoogle Scholar
  11. 11.
    van Reenen A, de Jong AM, den Toonder JMJ, Prins MWJ (2014) Integrated lab-on-chip biosensing systems based on magnetic particle actuation – a comprehensive review. Lab Chip 14(12):1966–1986CrossRefGoogle Scholar
  12. 12.
    Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl 53(19):4756–4795CrossRefGoogle Scholar
  13. 13.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRefGoogle Scholar
  14. 14.
    Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  15. 15.
    Zrimsek AB, Henry AI, Van Duyne RP (2013) Single molecule surface-enhanced Raman spectroscopy without nanogaps. J Phys Chem Lett 4(19):3206–3210CrossRefGoogle Scholar
  16. 16.
    Darby BL, Etchegoin PG, Le Ru EC (2014) Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation. Phys Chem Chem Phys 16(43):23895–23899CrossRefGoogle Scholar
  17. 17.
    von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN (2009) SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater 21(31):3175–3180CrossRefGoogle Scholar
  18. 18.
    Doering WE, Nie S (2003) Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced raman scattering. Anal Chem 75(22):6171–6176CrossRefGoogle Scholar
  19. 19.
    Faulds K, Barbagallo RP, Keer JT, Smith WE, Graham D (2004) SERRS as a more sensitive technique for the detection of labelled oligonucleotides compared to fluorescence. Analyst 129(7):567–568CrossRefGoogle Scholar
  20. 20.
    Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Surface-enhanced Raman Spectroscopy in single living cells using gold nanoparticles. Appl Spectrosc 56(2):150–154CrossRefGoogle Scholar
  21. 21.
    Xu H, Sha M, Cromer R, Penn S, Holland E, Chakarova G, Natan M (2012) Portable SERS sensor for sensitive detection of food-borne pathogens. In: Kumar CSR (ed) Raman spectroscopy for nanomaterials characterization. Springer, Berlin Heidelberg, pp 531–551. doi: 10.1007/978-3-642-20620-7_19 CrossRefGoogle Scholar
  22. 22.
    Vo-Dinh T (1998) Surface-enhanced Raman spectroscopy using metallic nanostructures. Trac-Trend Anal Chem 17(8–9):557–582CrossRefGoogle Scholar
  23. 23.
    Vo-Dinh T, Dhawan A, Norton SJ, Khoury CG, Wang HN, Misra V, Gerhold MD (2010) Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing. J Phys Chem C 114(16):7480–7488CrossRefGoogle Scholar
  24. 24.
    Vo-Dinh T, Fales AM, Griffin GD, Khoury CG, Liu Y, Ngo H, Norton SJ, Register JK, Wang HN, Yuan H (2013) Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy. Nanoscale 5(21):10127–10140CrossRefGoogle Scholar
  25. 25.
    Vo-Dinh T, Liu Y, Fales AM, Ngo H, Wang HN, Register JK, Yuan H, Norton SJ, Griffin GD (2015) SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(1):17–33CrossRefGoogle Scholar
  26. 26.
    Vo-Dinh T, Hiromoto MYK, Begun GM, Moody RL (1984) Surface-enhanced Raman spectrometry for trace organic-analysis. Anal Chem 56(9):1667–1670CrossRefGoogle Scholar
  27. 27.
    Khoury CG, Vo-Dinh T (2012) Plasmonic nanowave substrates for SERS: fabrication and numerical analysis. J Phys Chem C 116(13):7534–7545CrossRefGoogle Scholar
  28. 28.
    Ngo HT, Wang HN, Fales AM, Vo-Dinh T (2013) Label-free DNA biosensor based on SERS molecular sentinel on nanowave chip. Anal Chem 85(13):6378–6383CrossRefGoogle Scholar
  29. 29.
    Dick LA, McFarland AD, Haynes CL, Van Duyne RP (2002) Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J Phys Chem B 106(4):853–860CrossRefGoogle Scholar
  30. 30.
    Masson JF, Gibson KF, Provencher-Girard A (2010) Surface-enhanced Raman spectroscopy amplification with film over etched nanospheres. J Phys Chem C 114(51):22406–22412CrossRefGoogle Scholar
  31. 31.
    Fu CY, Kho KW, Dinish US, Koh ZY, Malini O (2012) Enhancement in SERS intensity with hierarchical nanostructures by bimetallic deposition approach. J Raman Spectrosc 43(8):977–985CrossRefGoogle Scholar
  32. 32.
    Im H, Bantz KC, Lee SH, Johnson TW, Haynes CL, Oh SH (2013) Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv Mater 25(19):2678–2685CrossRefGoogle Scholar
  33. 33.
    Kim D, Campos AR, Datt A, Gao Z, Rycenga M, Burrows ND, Greeneltch NG, Mirkin CA, Murphy CJ, Van Duyne RP, Haynes CL (2014) Microfluidic-SERS devices for one shot limit-of-detection. Analyst 139(13):3227–3234CrossRefGoogle Scholar
  34. 34.
    Farcau C, Astilean S (2010) Mapping the SERS efficiency and hot-spots localization on gold film over nanospheres substrates. J Phys Chem C 114(27):11717–11722CrossRefGoogle Scholar
  35. 35.
    Ma K, Yuen JM, Shah NC, Walsh JT, Glucksberg MR, Van Duyne RP (2011) In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal Chem 83(23):9146–9152CrossRefGoogle Scholar
  36. 36.
    Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540CrossRefGoogle Scholar
  37. 37.
    Hu J, Zheng PC, Jiang JH, Shen GL, Yu RQ, Liu GK (2010) Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy. Analyst 135(5):1084–1089CrossRefGoogle Scholar
  38. 38.
    Kang T, Yoo SM, Yoon I, Lee SY, Kim B (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10(4):1189–1193CrossRefGoogle Scholar
  39. 39.
    He Y, Su S, Xu TT, Zhong YL, Zapien JA, Li J, Fan CH, Lee ST (2011) Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 6(2):122–130CrossRefGoogle Scholar
  40. 40.
    He SJ, Liu KK, Su S, Yan J, Mao XH, Wang DF, He Y, Li LJ, Song SP, Fan CH (2012) Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Anal Chem 84(10):4622–4627CrossRefGoogle Scholar
  41. 41.
    Li JM, Wei C, Ma WF, An Q, Guo J, Hu J, Wang CC (2012) Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core-shell nanospheres. J Mater Chem 22(24):12100–12106CrossRefGoogle Scholar
  42. 42.
    Li M, Cushing SK, Liang HY, Suri S, Ma DL, Wu NQ (2013) Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA. Anal Chem 85(4):2072–2078CrossRefGoogle Scholar
  43. 43.
    Zhang H, Harpster MH, Park HJ, Johnson PA (2011) Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman-active gold nanoparticles. Anal Chem 83(1):254–260CrossRefGoogle Scholar
  44. 44.
    Zhang H, Harpster MH, Wilson WC, Johnson PA (2012) Surface-enhanced Raman scattering detection of DNAs Derived from virus genomes using Au-coated paramagnetic nanoparticles. Langmuir 28(8):4030–4037CrossRefGoogle Scholar
  45. 45.
    Li JM, Ma WF, You LJ, Guo J, Hu J, Wang CC (2013) Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates. Langmuir 29(20):6147–6155CrossRefGoogle Scholar
  46. 46.
    Donnelly T, Smith WE, Faulds K, Graham D (2014) Silver and magnetic nanoparticles for sensitive DNA detection by SERS. Chem Commun (Camb) 50(85):12907–12910CrossRefGoogle Scholar
  47. 47.
    Zhang ZL, Wen YQ, Ma Y, Luo J, Jiang L, Song YL (2011) Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection. Chem Commun 47(26):7407–7409CrossRefGoogle Scholar
  48. 48.
    van Lierop D, Faulds K, Graham D (2011) Separation free DNA detection using surface enhanced Raman scattering. Anal Chem 83(15):5817–5821CrossRefGoogle Scholar
  49. 49.
    MacAskill A, Crawford D, Graham D, Faulds K (2009) DNA sequence detection using surface-enhanced resonance Raman spectroscopy in a homogeneous multiplexed assay. Anal Chem 81(19):8134–8140CrossRefGoogle Scholar
  50. 50.
    Yi Z, Li XY, Liu FJ, Jin PY, Chu X, Yu RQ (2013) Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles. Biosens Bioelectron 43:308–314CrossRefGoogle Scholar
  51. 51.
    Faulds K, Jarvis R, Smith WE, Graham D, Goodacre R (2008) Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst 133(11):1505–1512CrossRefGoogle Scholar
  52. 52.
    Wabuyele MB, Vo-Dinh T (2005) Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. Anal Chem 77(23):7810–7815CrossRefGoogle Scholar
  53. 53.
    Wang HN, Vo-Dinh T (2009) Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 20(6):065101Google Scholar
  54. 54.
    Wang HN, Dhawan A, Du Y, Batchelor D, Leonard DN, Misra V, Vo-Dinh T (2013) Molecular sentinel-on-chip for SERS-based biosensing. Phys Chem Chem Phys 15(16):6008–6015CrossRefGoogle Scholar
  55. 55.
    Wang HN, Fales AM, Zaas AK, Woods CW, Burke T, Ginsburg GS, Vo-Dinh T (2013) Surface-enhanced Raman scattering molecular sentinel nanoprobes for viral infection diagnostics. Anal Chim Acta 786:153–158CrossRefGoogle Scholar
  56. 56.
    Ngo H, Wang H-N, Burke T, Ginsburg G, Vo-Dinh T (2014) Multiplex detection of disease biomarkers using SERS molecular sentinel-on-chip. Anal Bioanal Chem 406(14):3335–3344CrossRefGoogle Scholar
  57. 57.
    Ngo HT, Wang HN, Fales AM, Nicholson BP, Woods CW, Vo-Dinh T (2014) DNA bioassay-on-chip using SERS detection for dengue diagnosis. Analyst 139(22):5655–5659CrossRefGoogle Scholar
  58. 58.
    Wang HN, Fales AM, Vo-Dinh T (2015) Plasmonics-based SERS nanobiosensor for homogeneous nucleic acid detection. Nanomed 11(4):811–814CrossRefGoogle Scholar
  59. 59.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308CrossRefGoogle Scholar
  60. 60.
    Wei XP, Su S, Guo YY, Jiang XX, Zhong YL, Su YY, Fan CH, Lee ST, He Y (2013) A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed DNA detection. Small 9(15):2493–2499CrossRefGoogle Scholar
  61. 61.
    Pang YF, Wang JF, Xiao R, Wang SQ (2014) SERS molecular sentinel for the RNA genetic marker of PB1-F2 protein in highly pathogenic avian influenza (HPAI) virus. Biosens Bioelectron 61:460–465CrossRefGoogle Scholar
  62. 62.
    Wang H, Jiang XX, Wang X, Wei XP, Zhu Y, Sun B, Su YY, He SD, He Y (2014) Hairpin DNA-assisted silicon/silver-based surface-enhanced Raman scattering sensing platform for ultrahighly sensitive and specific discrimination of deafness mutations in a real system. Anal Chem 86(15):7368–7376CrossRefGoogle Scholar
  63. 63.
    Qi J, Zeng J, Zhao F, Lin SH, Raja B, Strych U, Willson RC, Shih WC (2014) Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics. Nanoscale 6(15):8521–8526CrossRefGoogle Scholar
  64. 64.
    Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1(1):601–626CrossRefGoogle Scholar
  65. 65.
    Zaas AK, Burke T, Chen M, McClain M, Nicholson B, Veldman T, Tsalik EL, Fowler V, Rivers EP, Otero R, Kingsmore SF, Voora D, Lucas J, Hero AO, Carin L, Woods CW, Ginsburg GS (2013) A host-based RT-PCR gene expression signature to identify acute respiratory viral infection. Sci Transl Med 5(203):203ra126CrossRefGoogle Scholar
  66. 66.
    McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectrosc 65(8):825–837CrossRefGoogle Scholar
  67. 67.
    Mahajan S, Baumberg JJ, Russell AE, Bartlett PN (2007) Reproducible SERRS from structured gold surfaces. Phys Chem Chem Phys 9(45):6016–6020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hoan T. Ngo
    • 1
    • 2
  • Hsin-Neng Wang
    • 1
    • 2
  • Andrew M. Fales
    • 1
    • 2
  • Tuan Vo-Dinh
    • 1
    • 2
    • 3
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Fitzpatrick Institute for PhotonicsDuke UniversityDurhamUSA
  3. 3.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations