Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 1, pp 319–326 | Cite as

FTIR spectroscopy characterization of fatty-acyl-chain conjugates

  • Vladimir Bobroff
  • Cyril Rubio
  • Valérie Vigier
  • Cyril Petibois
Research Paper

Abstract

FTIR spectroscopy is used to identify poly-l-lysin fatty-acyl-chain (PLL-FAC) conjugates based on structural differences found between FAC species. Twenty-one PLL-FAC models were used, from C8 to C24, and with up to 5 unsaturation levels (C20:5). Curve fitting of the 3050–2800 cm−1 spectral interval permitted extraction of IR bands belonging to the stretching vibration modes of methyl, methylene, and alkene groups. Based on molecular structure models in 3D, the number and position of methyl bands could be set according to chain length and unsaturation level. Band positions for ν-(C = C < H), νas(CH3), and νas(CH2) groups did not follow the maximum intensity shift of spectrum curve; it is the underlying band’s intensity that is modifying maximum intensity of spectrum curve with respect to chain length and unsaturation level. We thus propose to use FTIR spectroscopy for the production monitoring and the quality control of PLL-FAC conjugates used as nutritional complements, and this should be extended to analysis of fatty acid compounds in general.

Graphical abstract

Legend: Fatty-acyl-chain FTIR spectra bands assignation according to curve-fitting methods and cross-validated by molecular structure modeling. Series of fatty-acyl-chain conjugates of different length and with increased unsaturation levels allow determining the position of ν(-C = C < H), νas(CH3), and νas(CH2) groups. It is also demonstrated that νas(CH3) groups from polypeptidic chain or fatty acids do not raise and absorption band at the same location. Finally, νas(CH2) groups raise different absorption bands according to their position in the fatty acyl chain, at primer position (close to ester or amide bond), inner or terminal positions. The unsaturations of fatty acyl chains give rise to at least two ν(-C = C < H) absorption bands with second unsaturation group.

Keywords

FTIR spectroscopy Structural biology Saturated, mono-unsaturated, and poly-unsaturated fatty acids Fatty acid amide Nutrition Quality control 

Abbreviations

ATR

Attenuated total reflectance

FAC

Fatty acyl chain

FTIR

Fourier-transform infrared

PLL

Poly-l-lysine

Notes

Acknowledgments

This work was supported by the the “Ligue Nationale contre le cancer,” the “Agence Nationale de la Recherche” (ANR – contract n° ANR-13-TECS-0001).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

216_2015_9111_MOESM1_ESM.pdf (1.5 mb)
ESM 1 (PDF 1576 kb)

References

  1. 1.
    Gomez-Valades AG, Molas M, Vidal-Alabro A, Bermudez J, Bartrons R, Perales JC (2005) J Control Release 102:277–291CrossRefGoogle Scholar
  2. 2.
    Shih IL, Shen MH, Van YT (2006) Bioresour Technol 97:1148–1159CrossRefGoogle Scholar
  3. 3.
    Clements BA, Incani V, Kucharski C, Lavasanifar A, Ritchie B, Uludag H (2007) Biomaterials 28:4693–4704CrossRefGoogle Scholar
  4. 4.
    Vidal L, Thuault V, Mangas A, Covenas R, Thienpont A, Geffard M (2014) J Amino Acids 2014:672367CrossRefGoogle Scholar
  5. 5.
    Mangas A, Covenas R, Bodet D, de Leon M, Duleu S, Geffard M (2008) Int J Biol Sci 4:150–160CrossRefGoogle Scholar
  6. 6.
    Kawano T, Okuda T, Aoyagi H, Niidome T (2004) J Control Release 99:329–337CrossRefGoogle Scholar
  7. 7.
    Boullerne A, Petry KG, Geffard M (1996) J Neuroimmunol 65:75–81CrossRefGoogle Scholar
  8. 8.
    Tam SK, Dusseault J, Polizu S, Menard M, Halle JP, Yahia L (2005) Biomaterials 26:6950–6961CrossRefGoogle Scholar
  9. 9.
    Derenne A, Claessens T, Conus C, Goormaghtigh E In Encyclopedia of Biophysics Springer Berlin Heidelberg, 2013; Vol. 1841, pp 1074-1081Google Scholar
  10. 10.
    Spudich JL (1994) Nat Struct Biol 1:495–496CrossRefGoogle Scholar
  11. 11.
    Gazi E, Gardner P, Lockyer NP, Hart CA, Brown MD, Clarke NW (2007) J Lipid Res 48:1846–1856CrossRefGoogle Scholar
  12. 12.
    Drogat B, Bouchecareilh M, Petibois C, Déléris G, Chevet E, Bikfalvi A, Moenner M (2007) J Cell Physiol 212:463–472CrossRefGoogle Scholar
  13. 13.
    Petibois C (2010) Anal Bioanal Chem 397:2051–2065CrossRefGoogle Scholar
  14. 14.
    Mauerer A, Lee G (2006) Eur J Pharm Biopharm 62:131–142CrossRefGoogle Scholar
  15. 15.
    Blondelle SE, Lohner K, Aguilar M (1999) Biochim Biophys Acta 1462:89–108CrossRefGoogle Scholar
  16. 16.
    Castano S, Desbat B, Laguerre M, Dufourcq J (1999) Biochim Biophys Acta 1416:176–194CrossRefGoogle Scholar
  17. 17.
    Goormaghtigh E, Raussens V, Ruysschaert JM (1999) Biochim Biophys Acta 1422:105–185CrossRefGoogle Scholar
  18. 18.
    Zellmer S, Zimmermann I, Selle C, Sternberg B, Pohle W, Lasch J (1998) Chem Phys Lipids 94:97–108CrossRefGoogle Scholar
  19. 19.
    Gomez-Fernandez JC, Villalain J (1998) Chem Phys Lipids 96:41–52CrossRefGoogle Scholar
  20. 20.
    Rerek ME, Van Wyck D, Mendelsohn R, Moore DJ (2005) Chem Phys Lipids 134:51–58CrossRefGoogle Scholar
  21. 21.
    Petibois C, Cassaigne A, Gin H, Deleris G (2004) J Clin Endocrinol Metab 89:3377–3384CrossRefGoogle Scholar
  22. 22.
    Derenne A, Vandersleyen O, Goormaghtigh E (2014) Biochim Biophys Acta 1841:1200–1209CrossRefGoogle Scholar
  23. 23.
    Petibois C, Desbat B (2010) Trends Biotechnol 28:495–500CrossRefGoogle Scholar
  24. 24.
    Petibois C, Drogat B, Bikfalvi A, Deleris G, Moenner M (2007) FEBS Let 581:5469–5474CrossRefGoogle Scholar
  25. 25.
    Petibois C, Cazorla G, Gin H, Deleris G (2001) J Lab Clin Med 137:184–190CrossRefGoogle Scholar
  26. 26.
    Rieppo L, Saarakkala S, Narhi T, Helminen HJ, Jurvelin JS, Rieppo J (2012) Osteoarthr Cartil 20:451–459CrossRefGoogle Scholar
  27. 27.
    Stancik AL, Brauns EB (2008) Vib Spectrosc 47:66–69CrossRefGoogle Scholar
  28. 28.
    Petibois C, Cazorla G, Cassaigne A, Deleris G (2001) Clin Chem 47:730–738Google Scholar
  29. 29.
    Petibois C, Cazorla G, Deleris G (2002) Appl Spectrosc 56:10–17CrossRefGoogle Scholar
  30. 30.
    Petibois C, Déléris G (2005) Biopolymers 77:345–353CrossRefGoogle Scholar
  31. 31.
    Petibois C, Cestelli Guidi M, Piccinini M, Moenner M, Marcelli A (2010) Anal Bioanal Chem 397:2123–2129CrossRefGoogle Scholar
  32. 32.
    Castano S, Delord B, Fevrier A, Lehn JM, Lehn P, Desbat B (2009) Biochimie 91:765–773CrossRefGoogle Scholar
  33. 33.
    Gericke A, Smith ER, Moore DJ, Mendelsohn R, Storch J (1997) Biochemistry 36:8311–8317CrossRefGoogle Scholar
  34. 34.
    Xu W, Chen K, Liang D, Chew W (2009) Anal Biochem 387:42–53CrossRefGoogle Scholar
  35. 35.
    Troullier A, Reinstadler D, Dupont Y, Naumann D, Forge V (2000) Nat Struct Biol 7:78–86CrossRefGoogle Scholar
  36. 36.
    J.J. T (2002) Coord Chem Rev 230: 213-223Google Scholar
  37. 37.
    Geffard M: France, 2008; Vol. WO 2008122741 A1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vladimir Bobroff
    • 1
  • Cyril Rubio
    • 2
  • Valérie Vigier
    • 3
  • Cyril Petibois
    • 1
  1. 1.University of BordeauxPessacFrance
  2. 2.Analytical Standard Solutions – A2SSaint Jean d’IllacFrance
  3. 3.Gemac Lieu dit BergantonSaint Jean d’IllacFrance

Personalised recommendations