Analytical and Bioanalytical Chemistry

, Volume 408, Issue 1, pp 191–201 | Cite as

Novel determination of polychlorinated naphthalenes in water by liquid chromatography–mass spectrometry with atmospheric pressure photoionization

  • Athanasios I. Moukas
  • Nikolaos S. Thomaidis
  • Antony C. Calokerinos
Research Paper

Abstract

This study presents the development, optimization, and validation of a novel method for the determination of polychlorinated naphthalenes (PCNs) by liquid chromatography-atmospheric pressure photoionization (APPI), using toluene as dopant. The mass spectra of PCN 52, 54, 66, 67, 73, and 75 were recorded in negative ionization. The base ions corresponded to [M–Cl+O], where M is the analyte molecule. A strategy, which includes designs of experiments, for the development, the evaluation, and the optimization of the LC-APPI-MS/MS methods is also described. Finally, a highly sensitive method with low instrumental limits of detection (LoDs), ranging from 0.8 pg for PCN 75 to 16 pg for PCN 54 on column, was validated. A Thermo Hypersil Green PAH (100 mm × 2.1 mm, 3 μm) column was used with acetonitrile/water/methanol as mobile phase. The method was applied for the determination of the selected PCNs in surface and tap water samples. A simple liquid–liquid extraction method for the extraction of PCNs from water samples was used. Method LoQs ranged from 29 ng L−1, for PCN 73, to 63 ng L−1, for PCN 54, and the recoveries ranged from 97 to 99 %, for all congeners. This is the first LC-APPI-MS/MS method for the determination of PCNs in water samples.

Keywords

Polychlorinated naphthalenes (PCNs) Atmospheric pressure photoionization (APPI) Dopant LC-APPI-MS/MS Pseudo-SRM Experimental design 

Supplementary material

216_2015_9092_MOESM1_ESM.pdf (923 kb)
ESM 1(PDF 922 kb)

References

  1. 1.
    Robb D, Covey T, Bruins A (2000) Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal Chem 72:3653–3659CrossRefGoogle Scholar
  2. 2.
    Syage J, Evans M, Hanold K (2000) Photoionization mass spectrometry. Am Lab 32:24–29Google Scholar
  3. 3.
    Raffaelli A, Saba A (2003) Atmospheric pressure photoionization mass spectrometry. Mass Spectrom Rev 22:318–331CrossRefGoogle Scholar
  4. 4.
    Bos S, Van Leeuwen S, Karst U (2006) From fundamentals to applications: recent developments in atmospheric pressure photoionization mass spectrometry. Anal Bioanal Chem 384:85–99CrossRefGoogle Scholar
  5. 5.
    Marchi I, Rudaz S, Veuthey J (2009) Atmospheric pressure photoionization for coupling liquid-chromatography to mass spectrometry: a review. Talanta 78:1–18CrossRefGoogle Scholar
  6. 6.
    (2001) Chlorinated naphthalenes. W.H.O., GenevaGoogle Scholar
  7. 7.
    Brinkman U, Reymer H (1976) Polychlorinated naphthalenes. J Chromatogr 127:203–243CrossRefGoogle Scholar
  8. 8.
    Falandysz J (1998) Polychlorinated naphthalenes: an environmental update. Environ Pollut 101:77–90CrossRefGoogle Scholar
  9. 9.
    Helm P, Kannan K, Bidleman T (2006) Polychlorinated naphthalenes in the Great Lakes. Handb Environ Chem 5:267–306Google Scholar
  10. 10.
    Domingo J (2004) Polychlorinated naphthalenes in animal aquatic species and human exposure through the diet: a review. J Chromatogr A 1054:327–334CrossRefGoogle Scholar
  11. 11.
    Hayward D (1998) Identification of bioaccumulating polychlorinated naphthalenes and their toxicological significance. Environ Res 76:1–18CrossRefGoogle Scholar
  12. 12.
    Villeneuve D, Kannan K, Khim J, Falandysz J, Nikiforov V, Blankenship A, Giesy J (2000) Relative potencies of individual polychlorinated naphthalenes to induce dioxin-like responses in fish and mammalian in vitro bioassays. Arch Environ Contam Toxicol 39:273–281CrossRefGoogle Scholar
  13. 13.
    Van den Berg M, Birnbaum L, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson R (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241CrossRefGoogle Scholar
  14. 14.
    Weem A (2007) Exploration of management options for polychlorinated naphthalenes (PCN). SenterNovem, The NetherlandsGoogle Scholar
  15. 15.
    Marti I, Ventura F (1997) Polychlorinated naphthalenes in groundwater samples from the Llobregat aquifer (Spain). J Chromatogr A 786:135–144CrossRefGoogle Scholar
  16. 16.
    Kucklick J, Helm P (2006) Advances in the environmental analysis of polychlorinated naphthalenes and toxaphene. Anal Bioanal Chem 386:819–836CrossRefGoogle Scholar
  17. 17.
    Korytar P, Leonards P, De Boer J, Brinkman U (2005) Group separation of organohalogenated compounds by means of comprehensive two-dimensional gas chromatography. J Chromatogr A 1086:29–44CrossRefGoogle Scholar
  18. 18.
    Harner T, Bidleman T (1997) Polychlorinated naphthalenes in urban air. Atmos Environ 31:4009–4016CrossRefGoogle Scholar
  19. 19.
    Carrizo D, Grimalt J (2006) Rapid and simplified method for the analysis of polychloronaphthalene congener distributions in environmental and human samples by gas chromatography coupled to negative ion chemical ionization mass spectrometry. J Chromatogr A 1118:271–277CrossRefGoogle Scholar
  20. 20.
    Pan X, Tang J, Chen Y, Li J, Zhang G (2011) Polychlorinated naphthalenes (PCNs) in riverine and marine sediments of the Laizhou Bay area, North China. Environ Pollut 159:3515–3521CrossRefGoogle Scholar
  21. 21.
    Nakamura N, Uchimura T, Watanabe-Ezoe Y, Imasaka T (2011) Polychlorinated aromatic hydrocarbons in a soil sample measured using gas chromatography/multiphoton ionization/time-of-flight mass spectrometry. Anal Sci 27:617–622CrossRefGoogle Scholar
  22. 22.
    Castells P, Parera J, Santos F, Galceran M (2008) Occurrence of polychlorinated naphthalenes, polychlorinated biphenyls and short-chain chlorinated paraffins in marine sediments from Barcelona (Spain). Chemosphere 70:1552–1562CrossRefGoogle Scholar
  23. 23.
    Falandysz J, Nose K, Ishikawa Y, Łukaszewicz E, Yamashita N, Noma Y (2006) HRGC/HRMS analysis of chloronaphthalenes in several batches of Halowax 1000, 1001, 1013, 1014 and 1099. J Environ Sci Health A 41:2237–2255CrossRefGoogle Scholar
  24. 24.
    Fernandes A, Tlustos C, Rose M, Smith F, Carr M, Panton S (2011) Polychlorinated naphthalenes (PCNs) in Irish foods: occurrence and human dietary exposure. Chemosphere 85:322–328CrossRefGoogle Scholar
  25. 25.
    Hu J, Zheng M, Liu W, Li C, Nie Z, Liu G, Zhang B, Xiao K, Gao L (2013) Characterization of polychlorinated naphthalenes in stack gas emissions from waste incinerators. Environ Sci Pollut Res 20:2905–2911CrossRefGoogle Scholar
  26. 26.
    Brinkman U, De Kok A, Reymer H, De Vries G (1976) Analysis of polychlorinated naphthalenes by high performance liquid and thin layer chromatography. J Chromatogr 129:193–209CrossRefGoogle Scholar
  27. 27.
    Gulan M, Bills D, Putnam T (1974) Analysis of polychlorinated naphthalenes by gas chromatography and ultraviolet irradiation, B. Environ Contam Toxicol 11:438–441CrossRefGoogle Scholar
  28. 28.
    Maragou N, Thomaidis N, Koupparis M (2011) Optimization and comparison of ESI and APCI LC-MS/MS methods: a case study of irgarol 1051, diuron, and their degradation products in environmental samples. J Am Soc Mass Spectrom 22:1826–1838CrossRefGoogle Scholar
  29. 29.
    Riter L, Vitek O, Gooding K, Hodge B, Julian R (2005) Statistical design of experiments as a tool in mass spectrometry. J Mass Spectrom 40:565–579CrossRefGoogle Scholar
  30. 30.
    Moukas A, Thomaidis N, Calokerinos A (2014) Determination of polychlorinated biphenyls by liquid chromatography–atmospheric pressure photoionization–mass spectrometry. J Mass Spectrom 49:1096–1107CrossRefGoogle Scholar
  31. 31.
    Klaassen T, Szwandt S, Kapron J, Roemer A (2009) Validated quantitation method for a peptide in rat serum using liquid chromatography/high-field asymmetric waveform ion mobility spectrometry. Rapid Commun Mass Spectrom 23:2301–2306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Athanasios I. Moukas
    • 1
  • Nikolaos S. Thomaidis
    • 1
  • Antony C. Calokerinos
    • 1
  1. 1.Laboratory of Analytical Chemistry, Department of Chemistry, School of SciencesNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations