Analytical and Bioanalytical Chemistry

, Volume 407, Issue 30, pp 8979–8988 | Cite as

Screening of pharmaceuticals and illicit drugs in wastewater and surface waters of Spain and Italy by high resolution mass spectrometry using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS

  • Richard Bade
  • Nikolaos I. Rousis
  • Lubertus Bijlsma
  • Emma Gracia-Lor
  • Sara Castiglioni
  • Juan V. Sancho
  • Felix Hernandez
Research Paper

Abstract

The existence of pharmaceuticals and illicit drugs (PIDs) in environmental waters has led many analytical chemists to develop screening methods for monitoring purposes. Water samples can contain a huge number of possible contaminants, commonly at low concentrations, which makes their detection and identification problematic. Liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS) has proven itself effective in the screening of environmental contaminants. The present work investigates the use of the most popular HRMS instruments, quadrupole time-of-flight and linear trap quadrupole-Orbitrap, from two different laboratories. A suspect screening for PIDs was carried out on wastewater (influent and effluent) and surface water samples from Castellón, Eastern Spain, and Cremona, Northern Italy, incorporating a database of 107 PIDs (including 220 fragment ions). A comparison between the findings of both instruments and of the samples was made which highlights the advantages and drawbacks of the strategies applied in each case. In total, 28 compounds were detected and/or identified by either/both instruments with irbesartan, valsartan, benzoylecgonine and caffeine being the most commonly found compounds across all samples.

Graphical Abstract

A suspect screening of pharmaceuticals and illicit drugs in envrionmental waters of both Castellón, Spain and Cremona, Italy was carried out using liquid chromatography coupled with high resolution mass spectrometry

Keywords

Liquid chromatography Screening Pharmaceuticals Illicit drugs High resolution mass spectrometry 

Supplementary material

216_2015_9063_MOESM1_ESM.pdf (70 kb)
ESM 1(PDF 70 kb)

References

  1. 1.
    Richardson SD (2012) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 84:747–778. doi:10.1021/ac202903d CrossRefGoogle Scholar
  2. 2.
    Li WC (2014) Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 187:193–201. doi:10.1016/j.envpol.2014.01.015 CrossRefGoogle Scholar
  3. 3.
    Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434. doi:10.1016/j.chemosphere.2008.11.086 CrossRefGoogle Scholar
  4. 4.
    Brozinski J, Lahti M, Meierjohann A, Oikari A, Kronberg L (2013) The anti-inflammatory drugs diclofenac, naproxen and ibuprofen are found in the bile of wild fish caught downstream of a wastewater treatment plant. Environ Sci Technol 47:342–348. doi:10.1021/es303013j
  5. 5.
    Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641. doi:10.1016/j.scitotenv.2013.12.065 CrossRefGoogle Scholar
  6. 6.
    Pal R, Megharaj M, Kirkbride KP, Naidu R (2013) Illicit drugs and the environment—a review. Sci Total Environ 463–464:1079–1092. doi:10.1016/j.scitotenv.2012.05.086 CrossRefGoogle Scholar
  7. 7.
    Anumol T, Snyder SA (2015) Rapid analysis of trace organic compounds in water by automated online solid-phase extraction coupled to liquid chromatography–tandem mass spectrometry. Talanta 132:77–86. doi:10.1016/j.talanta.2014.08.011 CrossRefGoogle Scholar
  8. 8.
    Backe WJ, Field JA (2012) Is SPE necessary for environmental analysis? A quantitative comparison of matrix effects from large-volume injection and solid-phase extraction based methods. Environ Sci Technol 46:6750–6758. doi:10.1021/es300235z CrossRefGoogle Scholar
  9. 9.
    Krauss M, Singer H, Hollender J (2010) LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem 397:943–951. doi:10.1007/s00216-010-3608-9 CrossRefGoogle Scholar
  10. 10.
    Hernández F, Ibáñez M, Bade R, Bijlsma L, Sancho JV (2014) Investigation of pharmaceuticals and illicit drugs in waters by liquid chromatography-high-resolution mass spectrometry. TrAC Trends Anal Chem 63:140–157. doi:10.1016/j.trac.2014.08.003 CrossRefGoogle Scholar
  11. 11.
    Hernández F, Sancho JV, Ibáñez M, Abad E, Portolés T, Mattioli L (2012) Current use of high-resolution mass spectrometry in the environmental sciences. Anal Bioanal Chem 403:1251–1264. doi:10.1007/s00216-012-5844-7 CrossRefGoogle Scholar
  12. 12.
    Hernández F, Bijlsma L, Sancho JV, Díaz R, Ibáñez M (2011) Rapid wide-scope screening of drugs of abuse, prescription drugs with potential for abuse and their metabolites in influent and effluent urban wastewater by ultrahigh pressure liquid chromatography-quadrupole-time-of-flight-mass spectrometry. Anal Chim Acta 684:87–97. doi:10.1016/j.aca.2010.10.043 CrossRefGoogle Scholar
  13. 13.
    de Voogt P, Emke E, Helmus R, Panteliadis P, van Leerdam JA (2011) Determination of illicit drugs in the water cycle by LC-Orbtitrap MS. In: Castiglioni S, Zuccato E, Fanelli R (eds.) Illicit drugs environ. Occur. Anal. Fate Using Mass Spectrom., John Wiley & Sons, Ltd., pp. 87–114Google Scholar
  14. 14.
    Gómez MJ, Gómez-Ramos MM, Malato O, Mezcua M, Férnandez-Alba AR (2010) Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography-quadrupole-time-of-flight mass spectrometry with an accurate-mass. J Chromatogr A 1217:7038–7054. doi:10.1016/j.chroma.2010.08.070 CrossRefGoogle Scholar
  15. 15.
    Gonzalez-Mariño I, Quintana JB, Rodriguez I, Gonzalez-Diez M, Cela R (2012) Screening and selective quantification of illicit drugs in wastewater by mixed-mode solid-phase extraction and quadrupole-time-of-flight liquid chromatography–mass spectrometry. Anal Chem 84:1708–1717. doi:10.1021/ac202989e CrossRefGoogle Scholar
  16. 16.
    Ibáñez M, Guerrero C, Sancho JV, Hernández F (2009) Screening of antibiotics in surface and wastewater samples by ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. J Chromatogr A 1216:2529–2539. doi:10.1016/j.chroma.2009.01.073 CrossRefGoogle Scholar
  17. 17.
    Pinhancos R, Maass S, Ramanathan DM (2011) High-resolution mass spectrometry method for the detection, characterization and quantitation of pharmaceuticals in water. J Mass Spectrom 46:1175–1181. doi:10.1002/jms.2005 CrossRefGoogle Scholar
  18. 18.
    Wille K, Claessens M, Rappé K, Monteyne E, Janssen CR, De Brabander HF et al (2011) Rapid quantification of pharmaceuticals and pesticides in passive samplers using ultra high performance liquid chromatography coupled to high resolution mass spectrometry. J Chromatogr A 1218:9162–9173. doi:10.1016/j.chroma.2011.10.039 CrossRefGoogle Scholar
  19. 19.
    Kosma CI, Lambropoulou DA, Albanis TA (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466–467:421–438. doi:10.1016/j.scitotenv.2013.07.044 CrossRefGoogle Scholar
  20. 20.
    SEWPROF ITN: a new paradigm in drug use and human health risk assessment: sewage profiling at the community level, (n.d.). http://sewprof-itn.eu/. Accessed 1 June 2015
  21. 21.
    Bijlsma L, Beltrán E, Boix C, Sancho JV, Hernández F (2014) Improvements in analytical methodology for the determination of frequently consumed illicit drugs in urban wastewater. Anal Bioanal Chem 406:4261–4272. doi:10.1007/s00216-014-7818-4 CrossRefGoogle Scholar
  22. 22.
    Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP et al (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48:2097–2098. doi:10.1021/es5002105 CrossRefGoogle Scholar
  23. 23.
    Díaz R, Ibáñez M, Sancho JV, Hernández F (2011) Building an empirical mass spectra library for screening of organic pollutants by ultra-high-pressure liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25:355–369. doi:10.1002/rcm.4860 CrossRefGoogle Scholar
  24. 24.
    Diaz R, Ibáñez M, Sancho JV, Hernández F (2013) Qualitative validation of a liquid chromatography-quadrupole-time of flight mass spectrometry screening method for organic pollutants in waters. J Chromatogr A 1276:47–57. doi:10.1016/j.chroma.2012.12.030 CrossRefGoogle Scholar
  25. 25.
    Hernández F, Ibáñez M, Portolés T, Cervera MI, Sancho JV, López FJ (2015) Advancing towards universal screening for organic pollutants in waters. J Hazard Mater 282:86–95. doi:10.1016/j.jhazmat.2014.08.006 CrossRefGoogle Scholar
  26. 26.
    Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714. doi:10.1002/jms.1777 CrossRefGoogle Scholar
  27. 27.
    Gracia-Lor E, Sancho JV, Hernandez F (2010) Simultaneous determination of acidic, neutral and basic pharmaceuticals in urban wastewater by ultra high-pressure liquid chromatography-tandem mass spectrometry. J Chromatogr A 1217:622–632. doi:10.1016/j.chroma.2009.11.090 CrossRefGoogle Scholar
  28. 28.
    Gracia-Lor E, Sancho JV, Hernandez F (2011) Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1218:2264–2275. doi:10.1016/j.chroma.2011.02.026 CrossRefGoogle Scholar
  29. 29.
    Zuccato E, Castiglioni S, Bagnati R, Melis M, Fanelli R (2010) Source, occurrence and fate of antibiotics in the Italian aquatic environment. J Hazard Mater 179:1042–1048. doi:10.1016/j.jhazmat.2010.03.110 CrossRefGoogle Scholar
  30. 30.
    Zuccato E, Castiglioni S, Fanelli R, Reitano G, Bagnati R, Chiabrando C et al (2006) Pharmaceuticals in the environment in Italy: causes, occurrence, effects and control. Environ Sci Pollut Res Int 13:15–21. doi:10.1065/espr2006.01.004 CrossRefGoogle Scholar
  31. 31.
    Al Aukidy M, Verlicchi P, Jelic A, Petrovic M, Barcelò D (2012) Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci Total Environ 438:15–25. doi:10.1016/j.scitotenv.2012.08.061 CrossRefGoogle Scholar
  32. 32.
    Gómez MJ, Sirtori C, Mezcua M, Fernández-Alba AR, Agüera A (2008) Photodegradation study of three dipyrone metabolites in various water systems: identification and toxicity of their photodegradation products. Water Res 42:2698–2706. doi:10.1016/j.watres.2008.01.022 CrossRefGoogle Scholar
  33. 33.
    Metamizolo: una lunga storia tra luci ed ombre. Accessed November 2014 http://www.farmacovigilanza.org/focus/200608/
  34. 34.
    N. 2/2006 Prescription data: IT del Sistema Nacional de Salud Volumen 30, Subgrupos ATC y Principios activos de mayor consumo en el Sistema Nacional de Salud en 2005, (2006) 42–49Google Scholar
  35. 35.
    A.I. del Farmaco, L’uso dei Farmaci in Italia (2013) http://www.agenziafarmaco.gov.it/sites/default/files/Rapporto_OsMED_2013.pdf
  36. 36.
    Gracia-Lor E, Sancho JV, Serrano R, Hernandez F (2012) Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere 87:453–462. doi:10.1016/j.chemosphere.2011.12.025 CrossRefGoogle Scholar
  37. 37.
    Ferrer I, Thurman EM (2012) Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A 1259:148–157. doi:10.1016/j.chroma.2012.03.059 CrossRefGoogle Scholar
  38. 38.
    Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2007) Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry. J Chromatogr A 1161:132–145. doi:10.1016/j.chroma.2007.05.074 CrossRefGoogle Scholar
  39. 39.
    Guidance document on analytical quality control and validation procedures for pesticides residues in food and feed, SANCO /12571/2013 (2013) http://ec.europa.eu/food/plant/pesticides/guidance_documents/docs/qualcontrol_en.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Richard Bade
    • 1
  • Nikolaos I. Rousis
    • 2
  • Lubertus Bijlsma
    • 1
  • Emma Gracia-Lor
    • 2
  • Sara Castiglioni
    • 2
  • Juan V. Sancho
    • 1
  • Felix Hernandez
    • 1
  1. 1.Research Institute for Pesticides and WaterUniversity Jaume ICastellónSpain
  2. 2.Environmental Biomarkers Unit, Department of Environmental Health SciencesIRCCS—Istituto di Ricerche Farmacologiche “Mario Negri”MilanItaly

Personalised recommendations