Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 30, pp 8959–8970 | Cite as

Development of a MAb-based immunoassay for the simultaneous determination of O,O-diethyl and O,O-dimethyl organophosphorus pesticides in vegetable and fruit samples pretreated with QuEChERS

  • Fengchun Zhao
  • Chunyan Hu
  • Huimin Wang
  • Longyu Zhao
  • Zhengyou YangEmail author
Research Paper

Abstract

To develop a broad-specificity immunoassay for organophosphorus pesticides (OPs), a broad-specificity monoclonal antibody (MAb) for OPs against a generic hapten, O,O-diethyl O-(3-carboxyphenyl) phosphorothioate with the carboxy group in the meta position of the benzene ring, was produced. Eight haptens were prepared and covalently attached to ovalbumin (OVA) for use as coating antigens, and the optimum coating antigen was selected. Then, a sensitive and broadly class selective competitive indirect enzyme-linked immunosorbent assay (ciELISA) based on the MAb and the optimum coating antigen (hapten H-OVA, possessing an O,O-dimethyl generic structure and linked through a linear spacer arm) was developed and optimized. The MAb developed in this study showed quite different cross-reactivity and selectivity compared to previously produced anti-OPs broad-specificity MAbs. Specifically, the MAb showed high and uniform sensitivity to seven O,O-diethyl OPs and six O,O-dimethyl OPs. With the optimum ciELISA, the IC50 values of the 13 OPs were determined as 23.1∼151.2 ng mL−1. The average IC50 and coefficient of variation (CV) for the IC50 values of the 13 OPs were 74.6 ng mL−1 and 33.9 %, respectively. For the recovery study, a QuEChERS approach based on dispersive solid-phase extraction (d-SPE) was implemented to decrease the matrix effects of vegetable and fruit samples. The recoveries of six representative OPs from the spiked samples ranged from 89.4 to 135.5 %; the CV ranged from 3.5 to 15.7 %. The ciELISA was also applied to real samples, followed by confirmation with gas chromatography–tandem mass spectrometry (GC–MS/MS) analysis. The results demonstrated that the ciELISA is suitable for monitoring OP contamination in vegetable and fruit samples.

Graphical abstract

Development of a MAb-based immunoassay for determination of organophosphorus pesticides pretreated with QuEChERS

Keywords

Organophosphorus pesticides ciELISA Broad specificity QuEChERS d-SPE 

Notes

Acknowledgments

This study was supported by National Natural Science Foundation of China (grant numbers 30972050, 31271873) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2015_9055_MOESM1_ESM.pdf (4.8 mb)
ESM 1 (PDF 4952 kb)

References

  1. 1.
    Lu CS, Barr DB, Pearson MA, Waller LA (2008) Environ Health Perspect 116:537–542CrossRefGoogle Scholar
  2. 2.
    Liu D, Chen W, Wei J, Li X, Wang Z, Jiang X (2012) Anal Chem 84:4185–4191CrossRefGoogle Scholar
  3. 3.
    Zheng Z, Zhou Y, Li X, Liu S, Tang Z (2011) Biosens Bioelectron 26:3081–3085CrossRefGoogle Scholar
  4. 4.
    Long Q, Li H, Zhang Y, Yao S (2015) Biosens Bioelectron 68:168–174CrossRefGoogle Scholar
  5. 5.
    Yi Y, Zhu G, Liu C, Huang Y, Zhang Y, Li H, Zhang J, Yao S (2013) Anal Chem 85:11464–11470CrossRefGoogle Scholar
  6. 6.
    Palma P, Kuster M, Alvarenga P, Palma VL, Fernandes RM, Soares AMVM, de Alda MJ L, Barceló D, Barbosa IR (2009) Environ Int 35:545–551CrossRefGoogle Scholar
  7. 7.
    Zhu P, Miao H, Du J, Zou J, Zhang G, Zhao Y, Wu Y (2014) J Agric Food Chem 62:7092–7100CrossRefGoogle Scholar
  8. 8.
    Wu L, Song Y, Hu M, Zhang H, Yu A, Yu C, Ma Q, Wang Z (2015) Food Chem 176:197–204CrossRefGoogle Scholar
  9. 9.
    Fernández-Alba AR, García-Reyes JF (2008) TrAC Trend Anal Chem 27:973–990CrossRefGoogle Scholar
  10. 10.
    Seebunrueng K, Santaladchaiyakit Y, Srijaranai S (2014) Chemosphere 103:51–58CrossRefGoogle Scholar
  11. 11.
    Zhang L, Wang Z, Wen Y, Shi J, Wang J (2015) Anal Methods 7:205–210CrossRefGoogle Scholar
  12. 12.
    Hua X, Liu X, Shi H, Wang Y, Kim HJ, Gee SJ, Wang M, Liu F, Hammock BD (2014) RSC Adv 4:42445–42453CrossRefGoogle Scholar
  13. 13.
    Lee WY, Lee EK, Kim YJ, Park WC, Chung T, Lee YT (2006) Anal Chim Acta 557:169–178CrossRefGoogle Scholar
  14. 14.
    Gui W, Liu Y, Wang C, Liang X, Zhu G (2009) Anal Biochem 393:88–94CrossRefGoogle Scholar
  15. 15.
    Piao YZ, Kim YJ, Kim YA, Lee HS, Hammock BD, Lee YT (2009) J Agric Food Chem 57:10004–10013CrossRefGoogle Scholar
  16. 16.
    Li Y, Zhao F, Zhao L, Yang Z (2015) Food Anal Methods 8:420–427CrossRefGoogle Scholar
  17. 17.
    Zikos C, Evangelou A, Karachaliou CE, Gourma G, Blouchos P, Moschopoulou G, Yialouris C, Griffiths J, Johnson G, Petrou P, Kakabakos S, Kintzios S, Livaniou E (2015) Chemosphere 119:S16–S20CrossRefGoogle Scholar
  18. 18.
    Liu Y, Guo Y, Zhu G, Tang F (2014) J Food Prot 7:1052–1240Google Scholar
  19. 19.
    Liu Y, Lou Y, Xu D, Qian G, Zhang Q, Wu R, Hu B, Liu F (2009) Microchem J 93:36–42CrossRefGoogle Scholar
  20. 20.
    Yan X, Tang X, Li H, Sheng E, Yang D, Wang M (2014) Food Anal Methods 7:1186–1194CrossRefGoogle Scholar
  21. 21.
    Xu Z, Shen Y, Zheng W, Beier RC, Xie G, Dong J, Yang J, Wang H, Lei H, She Z, Sun Y (2010) Anal Chem 82:9314–9321CrossRefGoogle Scholar
  22. 22.
    Li X, Zhang H, Ji Y, Zheng Z, Bian Q, Zhu G (2015) Food Agric Immunol 26:109–119CrossRefGoogle Scholar
  23. 23.
    Xu Z, Wang H, Shen Y, Nichkova M, Lei H, Beier RC, Zheng W, Yang J, She Z, Sun Y (2011) Analyst 136:2512–2520CrossRefGoogle Scholar
  24. 24.
    Mak SK, Shan G, Lee HJ, Watanabe T, Stoutamire DW, Gee SJ, Hammock BD (2005) Anal Chim Acta 534:109–120CrossRefGoogle Scholar
  25. 25.
    Xu Z, Deng H, Deng X, Yang J, Jiang Y, Zeng D, Huang F, Shen Y, Lei H, Wang H, Sun Y (2012) Food Chem 131:1569–1576CrossRefGoogle Scholar
  26. 26.
    Xu Z, Dong J, Wang H, Li Z, Beier RC, Jiang Y, Lei H, Shen Y, Yang J, Sun Y (2012) J Agric Food Chem 60:5076–5083CrossRefGoogle Scholar
  27. 27.
    Wilkowska A, Biziuk M (2011) Food Chem 125:803–812CrossRefGoogle Scholar
  28. 28.
    Sinha SN, Vasudev K, Rao MVV (2012) Food Chem 132:1574–1584CrossRefGoogle Scholar
  29. 29.
    He Z, Chen S, Wang L, Peng Y, Luo M, Wang W, Liu X (2015) Anal Bioanal Chem 407:2637–2643CrossRefGoogle Scholar
  30. 30.
    Omar N, Bakar J, Muhammad K (2013) Food Control 34:318–322CrossRefGoogle Scholar
  31. 31.
    Bruzzoniti MC, Checchini L, De Carlo RM, Orlandini S, Rivoira L, Del Bubba M (2014) Anal Bioanal Chem 406:4089–4116CrossRefGoogle Scholar
  32. 32.
    Kolberg DI, Prestes OD, Adaime MB, Zanella R (2011) Food Chem 125:1436–1442CrossRefGoogle Scholar
  33. 33.
    McAdam DP, Hill AS, Beasley HL, Skerritt JH (1992) J Agric Food Chem 40:1466–1470CrossRefGoogle Scholar
  34. 34.
    Wang J, Yu G, Sheng W, Shi M, Guo B, Wang S (2011) J Agric Food Chem 59:2997–3003CrossRefGoogle Scholar
  35. 35.
    Xu Z, Zeng D, Yang J, Shen Y, Beier RC, Lei HT, Wang H, Sun Y (2011) J Environ Monit 13:3040–3048CrossRefGoogle Scholar
  36. 36.
    Spinks CA (2000) Trends Food Sci Technol 11:210–217CrossRefGoogle Scholar
  37. 37.
    Jang MS, Lee SJ, Xue X, Kwon HM, Ra CS, Lee YT, Chung T, Kor B (2002) Chem Soc 23:1116–1120Google Scholar
  38. 38.
    Nunes GS, Toscano IA, Barceló D (1998) TrAC Trend Anal Chem 17:79–87CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fengchun Zhao
    • 1
  • Chunyan Hu
    • 1
  • Huimin Wang
    • 1
  • Longyu Zhao
    • 1
  • Zhengyou Yang
    • 1
    Email author
  1. 1.Department of Microbiology, College of Life Science, Key Laboratory for Agriculture MicrobiologyShandong Agricultural UniversityTananChina

Personalised recommendations