Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 1, pp 35–47 | Cite as

Advances in explosives analysis—part I: animal, chemical, ion, and mechanical methods

  • Kathryn E. Brown
  • Margo T. Greenfield
  • Shawn D. McGrane
  • David S. MooreEmail author
Review
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts

Abstract

The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. This part, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

Keywords

Explosives detection Trace analysis Explosives Improvised explosives Instrumentation Reviews 

Explosives glossary

AN

Ammonium nitrate

ANTA

3-Amino-5-nitro-1,2,4-triazole

DNB

Dinitrobenzene (isomers 1,3-DNB and 1,4-DNB)

DNT

Dinitrotoluene (isomers 2,4-DNT and 2,6-DNT)

FOX-7

1,1-Diamino-2,2-dinitroethene (DADNE)

HME

Homemade explosive

HMTD

Hexamethylene triperoxide diamine

HMX

Octagen; octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

IED

Improvised explosive device

Picric acid

2,4,6-Trinitrophenol

NG

Nitroglycerine; nitro; glyceryl trinitrate; RNG; trinitroglycerine

NTO

Nitrotriazalone

PETN

Pentaerythritol tetranitrate; 2,2-bis[(nitroxy)methyl]-1,3-propanediol, dinitrate

RDX

Cyclonite; hexogen; hexahydro-1,3,5-trinitro-1,3,5-triazine

Semtex

Composition of PETN (or RDX and PETN) with heavy oils and rubbers

TATP

Triacetone triperoxide

Tetryl

Methyl-2,4,6-trinitrophenylnitramine

TNT

2,4,6-Trinitrotoluene; 2-methyl-1,3,5-trinitrobenzene

Notes

Acknowledgements

Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. The authors gratefully acknowledge the support of this study by Eric Sanders.

Conflict of interest

The authors declare that they have no potential conflict of interest.

References

  1. 1.
    Moore DS, Goodpaster JV (2009) Explosives analysis. Anal Bioanal Chem 395(2):245–246. doi: 10.1007/s00216-009-3003-6 CrossRefGoogle Scholar
  2. 2.
    Los Alamos Collaboration for Explosives Detection. (2015). http://laced.lanl.gov. Accessed 16 April 2015
  3. 3.
    Pacific Northwest National Laboratory Initiative for Explosives Detection. (2015). http://www.pnnl.gov/nationalsecurity/explosives.detection/. Accessed 16 April 2015
  4. 4.
    Awareness and localization of explosives-related threats (ALERT). (2015). http://www.northeastern.edu/alert/. Accessed 16 April 2015
  5. 5.
    Trace Explosives Detection Workshop. http://www.traceexplosives.org/. Accessed 7 May 2015
  6. 6.
    World Counter Terror Congress, London. (2015). http://www.counterterrorexpo.com/Content/Conference/4_11/. Accessed 27 April 2015
  7. 7.
    EU-US Explosives Experts’ Seminar, 6th seminar held in Haia, Portugal. (2015). http://www.dgsi.pt/bpjl.nsf/83cbe9acef94db5a8025730800549412/3bc4dadad170531580257d960041d1e5. Accessed 27 April 2015
  8. 8.
    2nd European Conference on Detection of Explosives - EUCDE (2013). http://www.enea.it/it/per-la-stampa/events/eucde_13-mar13/eucde. Accessed 7 May 2015
  9. 9.
    Vaseashta A, Khudaverdyan S (2013) Advanced sensors for safety and security. NATO science for peace and security series. Springer, Dordrecht, NetherlandsCrossRefGoogle Scholar
  10. 10.
    Mokalled LA-H, M.; Kabalan, K.Y.; El-Hajj, A. (2014) Sensor Review for Trace Detection of Explosives. http://www.ijser.org/paper/Sensor-Review-for-Trace-Detection-of-Explosives.html. Accessed 27 April 2015
  11. 11.
    Tourne M (2014) Developments in Explosives Characterization and Detection. Journal of Forensic Research s12 (01). doi: 10.4172/2157-7145.s12-002
  12. 12.
    Fountain AW, Kemp MC (2013) A review of sensor data fusion for explosives and weapons detection. 8710:87100X. doi: 10.1117/12.2015530
  13. 13.
    Pawliszyn J (2012) Comprehensive sampling and sample preparation. Academic Press, New YorkGoogle Scholar
  14. 14.
    Chalmers JM, Edwards HGM, Margreaves MD (2012) Infrared and raman spectroscopy in forensic science. Wiley, New YorkCrossRefGoogle Scholar
  15. 15.
    Staymates ME, Grandner J, Verkouteren JR (2013) Pressure-sensitive sampling wands for homeland security applications. IEEE Sensors J 13(12):4844–4850CrossRefGoogle Scholar
  16. 16.
    Young M, Fan W, Raeva A, Almirall J (2013) Application of receiver operating characteristic (ROC) curves for explosives detection using different sampling and detection techniques. Sensors 13(12):16867–16881CrossRefGoogle Scholar
  17. 17.
    Fan W, Almirall J (2014) High-efficiency headspace sampling of volatile organic compounds in explosives using capillary microextraction of volatiles (CMV) coupled to gas chromatography-mass spectrometry (GC-MS). Anal Bioanal Chem 406(8):2189–2195. doi: 10.1007/s00216-013-7410-3 CrossRefGoogle Scholar
  18. 18.
    Szomborg K, Jongekrijg F, Gilchrist E, Webb T, Wood D, Barron L (2013) Residues from low-order energetic materials: the comparative performance of a range of sampling approaches prior to analysis by ion chromatography. Forensic Sci Int 233(1–3):55–62. doi: 10.1016/j.forsciint.2013.08.018 CrossRefGoogle Scholar
  19. 19.
    Brown K, Greenfield M, McGrane S, Moore D (2015) Advances in explosives analysis - part II: photon and neutron methods. Anal Bioanal Chem. doi  10.1007/s00216-015-9043-1
  20. 20.
    Lazarowski L, Dorman DC (2014) Explosives detection by military working dogs: olfactory generalization from components to mixtures. Appl Anim Behav Sci 151:84–93. doi: 10.1016/j.applanim.2013.11.010 CrossRefGoogle Scholar
  21. 21.
    Zubedat S, Aga-Mizrachi S, Cymerblit-Sabba A, Shwartz J, Leon JF, Rozen S, Varkovitzky I, Eshed Y, Grinstein D, Avital A (2014) Human–animal interface: the effects of handler's stress on the performance of canines in an explosive detection task. Appl Anim Behav Sci 158:69–75. doi: 10.1016/j.applanim.2014.05.004 CrossRefGoogle Scholar
  22. 22.
    APOPO http://www.apopo.org/en. http://www.apopo.org/en. Accessed 15 April 2015
  23. 23.
    Carlsten ES, Wicks GR, Repasky KS, Carlsten JL, Bromenshenk JJ, Henderson CB (2011) Field demonstration of a scanning lidar and detection algorithm for spatially mapping honeybees for biological detection of land mines. Appl Opt 50(14):2112–2123. doi: 10.1364/AO.50.002112 CrossRefGoogle Scholar
  24. 24.
    Marshall B, Warr CG, de Bruyne M (2010) Detection of volatile indicators of illicit substances by the olfactory receptors of drosophila melanogaster. Chem Senses 35(7):613–625. doi: 10.1093/chemse/bjq050 CrossRefGoogle Scholar
  25. 25.
    Thomas N, de Marien B, Amalia ZB, Coral GW, Stephen CT (2014) Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications. Bioinspir Biomim 9(4):046007CrossRefGoogle Scholar
  26. 26.
    Choodum A, Kanatharana P, Wongniramaikul W, Daeid NN (2013) Using the iPhone as a device for a rapid quantitative analysis of trinitrotoluene in soil. Talanta 115:143–149. doi: 10.1016/j.talanta.2013.04.037 CrossRefGoogle Scholar
  27. 27.
    Salles MO, Meloni GN, de Araujo WR, Paixao TRLC (2014) Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach. Anal Methods 6(7):2047–2052. doi: 10.1039/c3ay41727a CrossRefGoogle Scholar
  28. 28.
    Oh J-W, Chung W-J, Heo K, Jin H-E, Lee BY, Wang E, Zueger C, Wong W, Meyer J, Kim C, Lee S-Y, Kim W-G, Zemla M, Auer M, Hexemer A, Lee S-W (2014) Biomimetic virus-based colourimetric sensors. Nat Commun 5. doi: 10.1038/ncomms4043
  29. 29.
    Peters KL, Corbin I, Kaufman LM, Zreibe K, Blanes L, McCord BR (2015) Simultaneous colorimetric detection of improvised explosive compounds using microfluidic paper-based analytical devices (mu PADs). Anal Methods 7(1):63–70. doi: 10.1039/c4ay01677g CrossRefGoogle Scholar
  30. 30.
    Zyryanov GV, Kopchuk DS, Kovalev IS, Nosova EV, Rusinov VL, Chupakhin ON (2014) Chemosensors for detection of nitroaromatic compounds (explosives). Russ Chem Rev 83(9):783–819. doi: 10.1070/RC2014v083n09ABEH004467 CrossRefGoogle Scholar
  31. 31.
    Askim JR, Mahmoudi M, Suslick KS (2013) Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev 42(22):8649–8682. doi: 10.1039/c3cs60179j CrossRefGoogle Scholar
  32. 32.
    Diehl KL, Anslyn EV (2013) Array sensing using optical methods for detection of chemical and biological hazards. Chem Soc Rev 42(22):8596–8611. doi: 10.1039/c3cs60136f CrossRefGoogle Scholar
  33. 33.
    Lin H, Suslick KS (2010) A colorimetric sensor array for detection of triacetone triperoxide vapor. J Am Chem Soc 132(44):15519–15521. doi: 10.1021/ja107419t CrossRefGoogle Scholar
  34. 34.
    Berliner A, Lee M-G, Zhang Y, Park SH, Martino R, Rhodes PA, Yi G-R, Lim SH (2014) A patterned colorimetric sensor array for rapid detection of TNT at ppt level. Rsc Adv 4(21):10672–10675. doi: 10.1039/c3ra47152g CrossRefGoogle Scholar
  35. 35.
    Kostesha N, Alstrom TS, Johnsen C, Nielsen KA, Jeppesen JO, Larsen J, Boisen A, Jakobsen MH (2011) Multi-colorimetric sensor array for detection of explosives in gas and liquid phase. Chemical, Biological, Radiological, Nuclear, and Explosives (Cbrne) Sensing Xii 8018. doi: 10.1117/12.883895
  36. 36.
    Bunte G, Heil M, Roeseling D, Huerttlen J, Pontius H, Krause H (2009) Trace detection of explosives vapours by molecularly imprinted polymers for security measures. Propellants Explos Pyrotechnics 34(3):245–251. doi: 10.1002/prep.200800111 CrossRefGoogle Scholar
  37. 37.
    Ma Y, Xu S, Wang S, Wang L (2015) Luminescent molecularly-imprinted polymer nanocomposites for sensitive detection. Trac-Trends Anal Chem 67:209–216. doi: 10.1016/j.trac.2015.01.012 CrossRefGoogle Scholar
  38. 38.
    Xu S, Lu H, Li J, Song X, Wang A, Chen L, Han S (2013) Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. ACS Appl Mater Interfaces 5(16):8146–8154. doi: 10.1021/am4022076 CrossRefGoogle Scholar
  39. 39.
    Stringer RC, Gangopadhyay S, Grant SA (2010) Use of Quantum Dot-Labeled Imprinted Polymer Microparticles for Detection of Nitroaromatic Compounds. Advanced Environmental, Chemical, and Biological Sensing Technologies Vii 7673. doi: 10.1117/12.852913
  40. 40.
    Stringer RC, Gangopadhyay S, Grant SA (2011) Comparison of molecular imprinted particles prepared using precipitation polymerization in water and chloroform for fluorescent detection of nitroaromatics. Anal Chim Acta 703(2):239–244. doi: 10.1016/j.aca.2011.07.034 CrossRefGoogle Scholar
  41. 41.
    Turner NW, Holdsworth CI, McCluskey A, Bowyer MC (2012) N-2-propenyl-(5-dimethylamino)-1-naphthalene sulfonamide, a novel fluorescent monomer for the molecularly imprinted polymer-based detection of 2,4-dinitrotoluene in the gas phase. Aust J Chem 65(10):1405–1412. doi: 10.1071/ch12155 CrossRefGoogle Scholar
  42. 42.
    Ye J, Zhao L, Bogale RF, Gao Y, Wang X, Qian X, Guo S, Zhao J, Ning G (2015) Highly Selective Detection of 2,4,6-Trinitrophenol and Cu2+ Ions Based on a Fluorescent Cadmium-Pamoate Metal-Organic Framework. Chemistry-a Eur J 21(5):2029–2037. doi: 10.1002/chem.201405267 CrossRefGoogle Scholar
  43. 43.
    Bao H, Wei T, Li X, Zhao Z, Cui H, Zhang P (2012) Detection of TNT by a molecularly imprinted polymer film-based surface plasmon resonance sensor. Chin Sci Bull 57(17):2102–2105. doi: 10.1007/s11434-012-5122-2 CrossRefGoogle Scholar
  44. 44.
    Cennamo N, Pesavento M, D'Agostino G, Galatus R, Bibbo L, Zeni L (2013) Detection of trinitrotoluene based on SPR in molecularly imprinted polymer on Plastic Optical Fiber. Fifth Eur Workshop Opt Fibre Sensors 8794. doi: 10.1117/12.2025695
  45. 45.
    Riskin M, Tel-Vered R, Willner I (2010) Imprinted Au-Nanoparticle Composites for the Ultrasensitive Surface Plasmon Resonance Detection of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Adv Mater 22(12):1387. doi: 10.1002/adma.200903007 CrossRefGoogle Scholar
  46. 46.
    Riskin M, Ben-Amram Y, Tel-Vered R, Chegel V, Almog J, Willner I (2011) Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Anal Chem 83(8):3082–3088. doi: 10.1021/ac1033424 CrossRefGoogle Scholar
  47. 47.
    Holthoff EL, Stratis-Cullum DN, Hankus ME (2010) Xerogel-Based Molecularly Imprinted Polymers for Explosives Detection. Chemical, Biological, Radiological, Nuclear, and Explosives (Cbrne) Sensing Xi 7665. doi: 10.1117/12.850129
  48. 48.
    Holthoff EL, Stratis-Cullum DN, Hankus ME (2011) A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced raman scattering. Sensors 11(3):2700–2714. doi: 10.3390/s110302700 CrossRefGoogle Scholar
  49. 49.
    Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B (2010) A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens Bioelectron 25(5):1166–1172. doi: 10.1016/j.bios.2009.10.003 CrossRefGoogle Scholar
  50. 50.
    Guo Z, Florea A, Cristea C, Bessueille F, Vocanson F, Goutaland F, Zhang A, Sandulescu R, Lagarde F, Jaffrezic-Renault N (2015) 1,3,5-Trinitrotoluene detection by a molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework. Sensors Actuators B-Chemical 207:960–966. doi: 10.1016/j.snb.2014.06.137 CrossRefGoogle Scholar
  51. 51.
    Mamo SK, Gonzalez-Rodriguez J (2014) Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (TATP). Sensors 14(12):23269–23282. doi: 10.3390/s141223269 CrossRefGoogle Scholar
  52. 52.
    Tan-Phat H, Sosnowska M, Sobczak JW, Kc CB, Nesterov VN, D'Souza F, Kutner W (2013) Simultaneous chronoamperometry and piezoelectric microgravimetry determination of nitroaromatic explosives using molecularly imprinted thiophene polymers. Anal Chem 85(17):8361–8368. doi: 10.1021/ac4017677 CrossRefGoogle Scholar
  53. 53.
    O'Mahony AM, Wang J (2013) Nanomaterial-based electrochemical detection of explosives: a review of recent developments. Anal Methods 5(17):4296. doi: 10.1039/c3ay40636a CrossRefGoogle Scholar
  54. 54.
    Bandodkar AJ, O'Mahony AM, Ramirez J, Samek IA, Anderson SM, Windmiller JR, Wang J (2013) Solid-state forensic finger sensor for integrated sampling and detection of gunshot residue and explosives: towards 'Lab-on-a-finger'. Analyst 138(18):5288–5295. doi: 10.1039/c3an01179h CrossRefGoogle Scholar
  55. 55.
    Dawson K, Wahl A, Barry S, Barrett C, Sassiat N, Quinn AJ, O’Riordan A (2014) Fully integrated on-chip nano-electrochemical devices for electroanalytical applications. Electrochim Acta 115:239–246. doi: 10.1016/j.electacta.2013.10.144 CrossRefGoogle Scholar
  56. 56.
    Yuan CX, Fan YR, Tao Z, Guo HX, Zhang JX, Wang YL, Shan DL, Lu XQ (2014) A new electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt-Pd nanoparticles supported by graphene-multiwalled carbon nanotube composite. Biosens Bioelectron 58:85–91. doi: 10.1016/j.bios.2014.01.041 CrossRefGoogle Scholar
  57. 57.
    Jimenez-Perez RB, Baron M, Rodriguez J-G (2013) Design of a virtual sensor data array for the analysis of RDX, HMX and DMNB using metal-doped screen printed electrodes and chemometric analysis. Int J Electrochem Sci 8(3):3279–3289Google Scholar
  58. 58.
    Charles PT, Adams AA, Deschamps JR, Veitch S, Hanson A, Kusterbeck AW (2014) Detection of Explosives in a Dynamic Marine Environment Using a Moored TNT Immunosensor. Sensors 14(3):4074–4085. doi: 10.3390/s140304074 CrossRefGoogle Scholar
  59. 59.
    Charles PT, Adams AA, Deschamps JR, Veitch SP, Hanson A, Kusterbeck AW (2011) Explosives detection in the marine environment using UUV-modified immunosensor. Chemical, Biological, Radiological, Nuclear, and Explosives (Cbrne) Sensing Xii 8018. doi: 10.1117/12.883243
  60. 60.
    Charles PT, Adams AA, Howell PB Jr, Trammell SA, Deschamps JR, Kusterbeck AW (2010) Fluorescence-based sensing of 2,4,6-trinitrotoluene (TNT) using a multi-channeled poly(methyl methacrylate) (PMMA) microimmunosensor. Sensors 10(1):876–889. doi: 10.3390/s100100876 CrossRefGoogle Scholar
  61. 61.
    Veitch SP, Kusterbeck AW, Fratantonio RJ, Charles PT, Egli PJ, Deschamps JR, Hanson AK, Adams AA (2011) Submerged explosives detection platforms using immunosensing technology. 2011 I.E. International Conference on Technologies for Homeland Security. doi: 10.1109/ths.2011.6107882
  62. 62.
    Liu JL, Zabetakis D, Acevedo-Velez G, Goldman ER, Anderson GP (2013) Comparison of an antibody and its recombinant derivative for the detection of the small molecule explosive 2,4,6-trinitrotoluene. Anal Chim Acta 759:100–104. doi: 10.1016/j.aca.2012.10.051 CrossRefGoogle Scholar
  63. 63.
    Girotti S, Eremin S, Montoya A, Moreno MJ, Caputo P, D'Elia M, Ripani L, Romolo FS, Maiolini E (2010) Development of a chemiluminescent ELISA and a colloidal gold-based LFIA for TNT detection. Anal Bioanal Chem 396(2):687–695. doi: 10.1007/s00216-009-3264-0 CrossRefGoogle Scholar
  64. 64.
    Mirasoli M, Buragina A, Dolci LS, Guardigli M, Simoni P, Montoya A, Maiolini E, Girotti S, Roda A (2012) Development of a chemiluminescence-based quantitative lateral flow immunoassay for on-field detection of 2,4,6-trinitrotoluene. Anal Chim Acta 721:167–172. doi: 10.1016/j.aca.2012.01.036 CrossRefGoogle Scholar
  65. 65.
    Yu Y, Cao Q, Zhou M, Cui H (2013) A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer. Biosens Bioelectron 43:137–142. doi: 10.1016/j.bios.2012.12.018 CrossRefGoogle Scholar
  66. 66.
    Giannetto M, Maiolini E, Ferri EN, Girotti S, Mori G, Careri M (2013) Competitive amperometric immunosensor based on covalent linking of a protein conjugate to dendrimer-functionalised nanogold substrate for the determination of 2,4,6-trinitrotoluene. Anal Bioanal Chem 405(2–3):737–743. doi: 10.1007/s00216-012-6137-x CrossRefGoogle Scholar
  67. 67.
    Park M, Cella LN, Chen W, Myung NV, Mulchandani A (2010) Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives. Biosens Bioelectron 26(4):1297–1301. doi: 10.1016/j.bios.2010.07.017 CrossRefGoogle Scholar
  68. 68.
    Mitchell J (2010) Small molecule immunosensing using surface plasmon resonance. Sensors 10(8):7323–7346CrossRefGoogle Scholar
  69. 69.
    Mizuta Y, Onodera T, Singh P, Matsumoto K, Miura N, Toko K (2010) Highly sensitive detection of TNT using a poly(amidoamine) dendron-based SPR immunosensor. Sensors Mater 22(4):193–200Google Scholar
  70. 70.
    Onodera T, Mizuta Y, Horikawa K, Singh P, Matsumoto K, Miura N, Toko K (2011) Displacement immunosensor based on surface plasmon resonance for rapid and highly sensitive detection of 2,4,6-trinitrotoluene. Sensors Mater 23(1):39–52Google Scholar
  71. 71.
    Onodera T, Toko K (2014) Towards an electronic Dog nose: surface plasmon resonance immunosensor for security and safety. Sensors 14(9):16586–16616. doi: 10.3390/s140916586 CrossRefGoogle Scholar
  72. 72.
    Tanaka Y, Yatabe R, Nagatomo K, Onodera T, Matsumoto K, Toko K (2013) Preparation and characteristics of Rat anti-1,3,5-trinitroperhydro-1,3,5-triazine (RDX) monoclonal antibody and detection of RDX using surface plasmon resonance immunosensor. Sensors J IEEE 13(11):4452–4458. doi: 10.1109/JSEN.2013.2269697 CrossRefGoogle Scholar
  73. 73.
    Yatabe R, Onodera T, Toko K (2013) Highly sensitive detection of 2,4,6-trinitrotoluene (TNT) using poly(vinylamine-co-N-vinylformamide)-based surface plasmon resonance (SPR) immunosensor. Sensors Mater 25(1):45–56Google Scholar
  74. 74.
    Yatabe R, Onodera T, Toko K (2013) Fabrication of an SPR sensor surface with antifouling properties for highly sensitive detection of 2,4,6-trinitrotoluene using surface-initiated atom transfer polymerization. Sensors 13(7):9294CrossRefGoogle Scholar
  75. 75.
    Boisen A, Dohn S, Keller SS, Schmid S, Tenje M (2011) Cantilever-like micromechanical sensors. Rep Prog Phys 74(3):036101CrossRefGoogle Scholar
  76. 76.
    Thundat T, Warmack RJ, Chen GY, Allison DP (1994) Thermal and ambient‐induced deflections of scanning force microscope cantilevers. Appl Phys Lett 64(21):2894–2896. doi: 10.1063/1.111407 CrossRefGoogle Scholar
  77. 77.
    Garcia-Romeo D, Calvo B, Medrano N, Pina MP, Almazan F, Pellejero I, Urbiztondo M, Sese J, Santamaria J (2014) Portable lock-in amplifier for microcantilever based sensor array. Application to explosives detection using Co-BEA type zeolites as sensing materials. IEEE Sensors 2014. Proceedings. doi: 10.1109/icsens.2014.6985279
  78. 78.
    Gilda NA, Surya S, Joshi S, Thaker V, Baghini MS, Sharma DK, Rao VR (2011) A low-cost, ultra sensitive hand-held system for explosive detection using piezo-resistive micro-cantilevers. 2011 International SoC Design Conference. doi: 10.1109/isocc.2011.6138776
  79. 79.
    Patil SJ, Duragkar N, Rao VR (2014) An ultra-sensitive piezoresistive polymer nano-composite microcantilever sensor electronic nose platform for explosive vapor detection. Sensors Actuators B Chem 192:444–451. doi: 10.1016/j.snb.2013.10.111 CrossRefGoogle Scholar
  80. 80.
    Seena V, Fernandes A, Pant P, Mukherji S, Rao VR (2011) Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection. Nanotechnology 22 (29). doi: 10.1088/0957-4484/22/29/295501
  81. 81.
    Seena V, Fernandes A, Mukherji S, Rao VR (2011) Photoplastic microcantilever sensor platform for explosive detection. Int J Nanosci 10(4–5):739–743. doi: 10.1142/s0219581x11008861 CrossRefGoogle Scholar
  82. 82.
    Ray P, Pandey S, Ramgopal Rao V (2014) Development of graphene nanoplatelet embedded polymer microcantilever for vapour phase explosive detection applications. J Appl Phys 116(12):124902. doi: 10.1063/1.4896255 CrossRefGoogle Scholar
  83. 83.
    Chen Y, Xu P, Li X (2010) Self-assembling siloxane bilayer directly on SiO 2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives. Nanotechnology 21(26):265501CrossRefGoogle Scholar
  84. 84.
    Zhu W, Park JS, Sessler JL, Gaitas A (2011) A colorimetric receptor combined with a microcantilever sensor for explosive vapor detection. Appl Phys Lett 98 (12). doi: 10.1063/1.3567011
  85. 85.
    Strle D, Stefane B, Zupanic E, Trifkovic M, Macek M, Jaksa G, Kvasic I, Musevic I (2014) Sensitivity comparison of vapor trace detection of explosives based on chemo-mechanical sensing with optical detection and capacitive sensing with electronic detection. Sensors 14(7):11467–11491. doi: 10.3390/s140711467 CrossRefGoogle Scholar
  86. 86.
    Shemesh A, Blank T, Meltzman S, Stolyarova S, Edrei R, Borzin E, Nemirovsky Y, Eichen Y (2014) Plasticization of a polymer layer harnessed to a silicon microcantilever as a highly sensitive and selective means to detect nitroaromatic derivatives. J Polym Sci A Polym Chem 52(15):2124–2130. doi: 10.1002/pola.27219 CrossRefGoogle Scholar
  87. 87.
    Cottineau T, Pronkin SN, Acosta M, Mény C, Spitzer D, Keller V (2013) Synthesis of vertically aligned titanium dioxide nanotubes on microcantilevers for new nanostructured micromechanical sensors for explosive detection. Sensors Actuators B Chem 182:489–497. doi: 10.1016/j.snb.2013.03.049 CrossRefGoogle Scholar
  88. 88.
    Wang D, Chen A, Jang S-H, Yip H-L, Jen AKY (2011) Sensitivity of titania(B) nanowires to nitroaromatic and nitroamino explosives at room temperature via surface hydroxyl groups. J Mater Chem 21(20):7269–7273. doi: 10.1039/C1JM10124B CrossRefGoogle Scholar
  89. 89.
    Spitzer D, Cottineau T, Piazzon N, Josset S, Schnell F, Pronkin SN, Savinova ER, Keller V (2012) Bio-inspired nanostructured sensor for the detection of ultralow concentrations of explosives. Angewandte Chemie-Int Ed 51(22):5334–5338. doi: 10.1002/anie.201108251 CrossRefGoogle Scholar
  90. 90.
    Ruan W, Li Y, Tan Z, Liu L, Jiang K, Wang Z (2013) In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sensors Actuators B Chem 176:141–148. doi: 10.1016/j.snb.2012.10.026 CrossRefGoogle Scholar
  91. 91.
    Ruan W, Wang Z, Li Y, Liu L (2013) A microcalorimeter integrated with carbon nanotube interface layers for fast detection of trace energetic chemicals. J Microelectromech Syst 22(1):152–162. doi: 10.1109/jmems.2012.2220526 CrossRefGoogle Scholar
  92. 92.
    Xu P, Yu H, Xia X, Yu F, Liu M, Li X Resonant cantilevers with nanoparticles-spaced functional graphene-oxide sheets for high-performance sensing to ppt-level explosive vapor. In: Micro Electro Mechanical Systems (MEMS), 2013 I.E. 26th International Conference on, 20–24 Jan. 2013 2013. pp 989–992. doi: 10.1109/MEMSYS.2013.6474413
  93. 93.
    Pina MP, Almazan F, Eguizabal A, Pellejero I, Urbiztondo M, Sese J, Santamaria J, Garcia-Romeo D, Calvo B, Medrano N (2014) Explosives Detection by array of Si mu-cantilevers coated with titanosilicate type nanoporous materials. IEEE Sensors 2014. Proceedings. doi: 10.1109/icsens.2014.6985276
  94. 94.
    Kim S, Lee D, Liu X, Van Neste C, Jeon S, Thundat T (2013) Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser. Sci Rep 3. doi:http://www.nature.com/srep/2013/130123/srep01111/abs/srep01111.html - supplementary-information
  95. 95.
    Kim S, Lee D, Thundat T (2014) Photothermal cantilever deflection spectroscopy. EPJ Techniques Instrum 1(1):1–12CrossRefGoogle Scholar
  96. 96.
    Lee D, Kim S, Chae I, Jeon S, Thundat T (2014) Nanowell-patterned TiO2 microcantilevers for calorimetric chemical sensing. Appl Phys Lett 104(14):141903. doi: 10.1063/1.4870535 CrossRefGoogle Scholar
  97. 97.
    Lee D, Kim S, Jeon S, Thundat T (2014) Direct detection and speciation of trace explosives using a nanoporous multifunctional microcantilever. Anal Chem 86(10):5077–5082. doi: 10.1021/ac500745g CrossRefGoogle Scholar
  98. 98.
    Lee D, Kim S, Neste CWV, Lee M, Jeon S, Thundat T (2014) Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array. Nanotechnology 25(3):035501CrossRefGoogle Scholar
  99. 99.
    Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18. doi: 10.1016/j.aca.2011.12.008 CrossRefGoogle Scholar
  100. 100.
    Bhalla V, Pramanik S, Kumar M (2013) Cyanide modulated fluorescent supramolecular assembly of a hexaphenylbenzene derivative for detection of trinitrotoluene at the attogram level. Chem Commun 49(9):895–897. doi: 10.1039/c2cc36872b CrossRefGoogle Scholar
  101. 101.
    Lin D, Liu H, Qian K, Zhou X, Yang L, Liu J (2012) Ultrasensitive optical detection of trinitrotoluene by ethylenediamine-capped gold nanoparticles. Anal Chim Acta 744:92–98. doi: 10.1016/j.aca.2012.07.029 CrossRefGoogle Scholar
  102. 102.
    Buryakov IA (2011) Detection of explosives by ion mobility spectrometry. J Anal Chem 66(8):674CrossRefGoogle Scholar
  103. 103.
    Makinen M, Nousiainen M, Sillanpaa M (2011) Ion spectrometric detection technologies for ultra-traces of explosives: a review. Mass Spectrom Rev 30(5):940–973. doi: 10.1002/mas.20308 Google Scholar
  104. 104.
    Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54(3):515–529. doi: 10.1016/s0039-9140(00)00565-8 CrossRefGoogle Scholar
  105. 105.
    Najarro M, Davila Morris M, Staymates M, Fletcher R, Gillen G (2012) Optimized thermal desorption for improved sensitivity in trace explosives detection by ion mobility spectrometry. Analyst (Cambridge UK) 137(11):2614–2622. doi: 10.1039/c2an16145a CrossRefGoogle Scholar
  106. 106.
    Ewing RG, Waltman M, Atkinson D, Grate JW, Hotchkiss P (2013) The vapor pressure of explosives. Trends Anal Chem 42:35--48. doi: 10.1016/j.trac.2012.09.010
  107. 107.
    Ostmark H, Wallin S, Ang HG (2012) Vapor pressure of explosives: a critical review. Propellants Explos Pyrotechnics 37(1):12–23. doi: 10.1002/prep.201100083 CrossRefGoogle Scholar
  108. 108.
    Hilton C, Krueger C, Midey A, Osgood M, Wu J, Wu C (2010) Improved analysis of explosives samples with electrospray ionization-high resolution ion mobility spectrometry (ESI-HRIMS). Int JMass Spectrom 298(1–3):64–71. doi: 10.1016/j.ijm5.2010.08.011 CrossRefGoogle Scholar
  109. 109.
    Ehlert S, Walte A, Zimmermann R (2013) Ambient pressure laser desorption and laser-induced acoustic desorption Ion mobility spectrometry detection of explosives. Anal Chem 85(22):11047–11053. doi: 10.1021/ac402704c CrossRefGoogle Scholar
  110. 110.
    Akmalov AE, Bogdanov AS, Kotkovskii GE, Spitsyn EM, Sychev AV, Perederii AN, Chistyakov AA (2013) A laser desorption ion-mobility increment spectrometer for detection of ultralow concentrations of nitro compounds. (Report). Instrum Exp Tech 56(3):309CrossRefGoogle Scholar
  111. 111.
    Fan W, Young M, Canino J, Smith J, Oxley J, Almirall JR (2012) Fast detection of triacetone triperoxide (TATP) from headspace using planar solid-phase microextraction (PSPME) coupled to an IMS detector. (Report). Anal Bioanal Chem 403(2):401CrossRefGoogle Scholar
  112. 112.
    Guerra-Diaz P, Gura S, Almirall JR (2010) Dynamic planar solid phase microextraction-ion mobility spectrometry for rapid field air sampling and analysis of illicit drugs and explosives. Anal Chem 82(7):2826. doi: 10.1021/ac902785y CrossRefGoogle Scholar
  113. 113.
    Cook GW, LaPuma PT, Hook GL, Eckenrode BA (2010) Using Gas chromatography with Ion mobility spectrometry to resolve explosive compounds in the presence of interferents. J Forensic Sci 55(6):1582–1591. doi: 10.1111/j.1556-4029.2010.01522.x CrossRefGoogle Scholar
  114. 114.
    Alberici RM, Simas RC, Sanvido GB, Romao W, Lalli PM, Benassi M, Cunha IBS, Eberlin MN (2010) Ambient mass spectrometry: bringing MS into the "real world". Anal Bioanal Chem 398(1):265–294. doi: 10.1007/s00216-010-3808-3 CrossRefGoogle Scholar
  115. 115.
    Chen SS, Wang W, Zhou Q, Chen C, Peng L, Hua L, Li Y, Hou K, Li H (2014) Fast switching of CO3-(H2O)(n) and O-2(-)(H2O)(n) reactant ions in dopant-assisted negative photoionization Ion mobility spectrometry for explosives detection. Anal Chem 86(5):2687–2693. doi: 10.1021/ac404067z CrossRefGoogle Scholar
  116. 116.
    Ewing RG, Waltman MJ, Atkinson DA (2011) Characterization of triacetone triperoxide by ion mobility spectrometry and mass spectrometry following atmospheric pressure chemical ionization. Anal Chem 83(12):4838–44. doi: 10.1021/ac200466v CrossRefGoogle Scholar
  117. 117.
    Liang XX, Zhou Q, Wang W, Wang X, Chen W, Chen C, Li Y, Hou K, Li J, Li H (2013) Sensitive detection of black powder by a stand-alone Ion mobility spectrometer with an embedded titration region. Anal Chem 85(10):4849–4852. doi: 10.1021/ac400337s CrossRefGoogle Scholar
  118. 118.
    Crawford C, Hill H (2013) Comparison of reactant and analyte ions for (63)Nickel, corona discharge, and secondary electrospray ionization sources with ion mobility-mass spectrometry. Talanta 107:225–232. doi: 10.1016/j.talanta.2013.01.009 CrossRefGoogle Scholar
  119. 119.
    Kozole J, Tomlinson-Phillips J, Stairs J, Harper JD, Lukow SR, Lareua RT, Boudries H, Lai H, Brauer CS (2012) Characterizing the gas phase ion chemistry of an ion trap mobility spectrometry based explosive trace detector using a tandem mass spectrometer. (Report). Talanta 99:799CrossRefGoogle Scholar
  120. 120.
    Lee J, Park S, Cho SG, Goh EM, Lee S, Koh S-S, Kim J (2014) Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry. Talanta 120:64–70. doi: 10.1016/j.talanta.2013.11.059 CrossRefGoogle Scholar
  121. 121.
    Rajapakse R, Stone J, Eiceman G (2014) An ion mobility and theoretical study of the thermal decomposition of the adduct formed between ethylene glycol dinitrate and chloride. Int J Mass Spectrom 371:28–35. doi: 10.1016/j.ijms.2014.07.039 CrossRefGoogle Scholar
  122. 122.
    Tomlinson-Phillips J, Wooten A, Kozole J, Deline J, Beresford P, Stairs J (2014) Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer. Talanta 127:152–162. doi: 10.1016/j.talanta.2014.03.044 CrossRefGoogle Scholar
  123. 123.
    Chen C-H, Chen T-C, Zhou X, Kline-Schoder R, Sorensen P, Cooks RG, Ouyang Z (2015) Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems. J Am Soc Mass Spectrom 26(2):240–247. doi: 10.1007/s13361-014-1026-5 CrossRefGoogle Scholar
  124. 124.
    Sanders NL, Kothari S, Huang G, Salazar G, Cooks RG (2010) Detection of explosives as negative ions directly from surfaces using a miniature mass spectrometer. Anal Chem 82(12):5313–5316. doi: 10.1021/ac1008157 CrossRefGoogle Scholar
  125. 125.
    Chen W, Hou K, Xiong X, Jiang Y, Zhao W, Hua L, Chen P, Xie Y, Wang Z, Li H (2013) Non-contact halogen lamp heating assisted LTP ionization miniature rectilinear ion trap: a platform for rapid, on-site explosives analysis. Analyst 138(17):5068–5073. doi: 10.1039/c3an00555k CrossRefGoogle Scholar
  126. 126.
    Giannoukos S, Brkic B, Taylor S, France N (2015) Membrane inlet mass spectrometry for homeland security and forensic applications. J Am Soc Mass Spectrom 26(2):231–239. doi: 10.1007/s13361-014-1032-7 CrossRefGoogle Scholar
  127. 127.
    Hendricks PI, Dalgleish JK, Shelley JT, Kirleis MA, McNicholas MT, Li L, Chen T-C, Chen C-H, Duncan JS, Boudreau F, Noll RJ, Denton JP, Roach TA, Ouyang Z, Cooks RG (2014) Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance. Anal Chem 86(6):2900–2908. doi: 10.1021/ac403765x CrossRefGoogle Scholar
  128. 128.
    Hou K, Xu W, Xu J, Cooks RG, Ouyang Z (2011) Sampling wand for an Ion trap mass spectrometer. Anal Chem 83(5):1857–1861. doi: 10.1021/ac102962e CrossRefGoogle Scholar
  129. 129.
    McNaught AD, Wilkinson A (1997) IUPAC Compendium of Chemical Terminology. Blackwell Scientific Publications, Oxford. http://goldbook.iupac.org/L03450.html
  130. 130.
    Morelato M, Beavis A, Kirkbride P, Roux C (2013) Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS). Forensic Sci Int 226(1–3):10–21. doi: 10.1016/j.forsciint.2013.01.011 CrossRefGoogle Scholar
  131. 131.
    Garcia-Reyes JF, Harper JD, Salazar GA, Charipar NA, Ouyang Z, Cooks RG (2011) Detection of explosives and related compounds by Low-temperature plasma ambient ionization mass spectrometry. Anal Chem 83(3):1084–1092. doi: 10.1021/ac1029117 CrossRefGoogle Scholar
  132. 132.
    Ewing RG, Atkinson D, Clowers B (2013) Direct real-time detection of RDX vapors under ambient conditions. Anal Chem 85(1):389–397. doi: 10.1021/ac302828g CrossRefGoogle Scholar
  133. 133.
    Ewing RG, Clowers B, Atkinson D (2013) Direct real-time detection of vapors from explosive compounds. Anal Chem 85:10977-10983, doi: 10.1021/ac402513r
  134. 134.
    Mayhew CA, Sulzer P, Petersson F, Haidacher S, Jordan A, Maerk L, Watts P, Maerk TD (2010) Applications of proton transfer reaction time-of-flight mass spectrometry for the sensitive and rapid real-time detection of solid high explosives. Int J Mass Spectrom 289(1):58–63. doi: 10.1016/j.ijms.2009.09.006 CrossRefGoogle Scholar
  135. 135.
    Chen LC, Rahman MM, Hiraoka K (2013) Super-atmospheric pressure chemical ionization mass spectrometry. J Mass Spectrom 48(3):392–398. doi: 10.1002/jms.3173 CrossRefGoogle Scholar
  136. 136.
    Sisco E, Dake J, Bridge C (2013) Screening for trace explosives by AccuTOF (TM)-DART (R): an in-depth validation study. Forensic Sci Int 232(1–3):160–168. doi: 10.1016/j.forsciint.2013.07.006 CrossRefGoogle Scholar
  137. 137.
    Swider JR (2013) Optimizing accu time-of-flight/direct analysis in real time for explosive residue analysis. J Forensic Sci 58(6):1601–1606. doi: 10.1111/1556-4029.12276 CrossRefGoogle Scholar
  138. 138.
    Crawford CL, Hill HH Jr (2013) Evaluation of false positive responses by mass spectrometry and ion mobility spectrometry for the detection of trace explosives in complex samples. Anal Chim Acta 795:36–43. doi: 10.1016/j.aca.2013.07.070 CrossRefGoogle Scholar
  139. 139.
    Ehlert S, Hoelzer J, Rittgen J, Puetz M, Schulte-Ladbeck R, Zimmermann R (2013) Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry. Anal Bioanal Chem 405(22):6979–6993. doi: 10.1007/s00216-013-6839-8 CrossRefGoogle Scholar
  140. 140.
    Forbes TP, Brewer TM, Gillen G (2013) Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry. Analyst 138(19):5665–5673. doi: 10.1039/c3an01164j CrossRefGoogle Scholar
  141. 141.
    Forbes TP, Sisco E (2014) Mass spectrometry detection and imaging of inorganic and organic explosive device signatures using desorption electro-flow focusing ionization. Anal Chem 86(15):7788–7797. doi: 10.1021/ac501718j CrossRefGoogle Scholar
  142. 142.
    Nilles JM, Connell TR, Stokes ST, Durst HD (2010) Explosives detection using direct analysis in real time (DART) mass spectrometry. Propellants Explos Pyrotechnics 35(5):446–451. doi: 10.1002/prep.200900084 CrossRefGoogle Scholar
  143. 143.
    Takada Y, Nagano H, Suzuki Y, Sugiyama M, Nakajima E, Hashimoto Y, Sakairi M (2011) High-throughput walkthrough detection portal for counter terrorism: detection of triacetone triperoxide (TATP) vapor by atmospheric-pressure chemical ionization ion trap mass spectrometry. Rapid Commun Mass Spectrom 25(17):2448–2452. doi: 10.1002/rcm.5147 CrossRefGoogle Scholar
  144. 144.
    Takada Y, Suzuki Y, Nagano H, Sugiyama M, Nakajima E, Sugaya M, Hashimoto Y, Sakairi M (2012) High-throughput walkthrough detection portal as a measure for counter terrorism: design of a vapor sampler for detecting triacetone triperoxide vapor by atmospheric-pressure chemical-ionization Ion-trap mass spectrometry. Ieee Sensors J 12(6):1673–1680. doi: 10.1109/jsen.2011.2176929 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • Kathryn E. Brown
    • 1
  • Margo T. Greenfield
    • 1
  • Shawn D. McGrane
    • 1
  • David S. Moore
    • 1
    Email author
  1. 1.Shock and Detonation Physics Group, Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations