Analytical and Bioanalytical Chemistry

, Volume 407, Issue 29, pp 8753–8764 | Cite as

Double salts of ionic-liquid-based surfactants in microextraction: application of their mixed hemimicelles as novel sorbents in magnetic-assisted micro-dispersive solid-phase extraction for the determination of phenols

Research Paper


The use of mixed hemimicelles of ionic liquid (IL)-based surfactants in a magnetic-based micro-dispersive solid-phase extraction (m-μdSPE) approach is described. Not only is the symmetric monocationic IL-based surfactant 1,3-didodecylimidazolium bromide (C12C12Im-Br) studied for first time in m-μdSPE, but double-salt (DS) IL (DSIL)-based surfactants are also examined. Nine DSIL-based surfactants were formed by combination of C12C12Im-Br with other IL-based surfactants, including nonsymmetric monocationic and dicationic ILs combined at three different molar fractions. The analytical application was focused on the determination of a group of eight phenols, including bisphenol A, in water samples. The best results were obtained with the DSIL formed by C12C12Im-Br (molar fraction 0.5) and 1-hexadecyl-3-methylimidazolium bromide (C16MIm-Br), after proper optimization of the overall method in combination with high-performance liquid chromatography (HPLC) and diode-array detection (DAD). The optimum conditions for 100 mL of water samples require a small amount (10 mg) of Fe3O4 magnetic nanoparticles, a low content (5.0 mg of C12C12Im-Br and 3.9 mg of C16MIm-Br) of the selected DSIL, pH 11, a sonication time of 2.5 min, and an equilibration time of 5 min with the aid of NdFeB magnets, followed by elution of phenols, evaporation, and reconstitution with 0.5 mL of acetonitrile. The overall m-μdSPE–HPLC–DAD method is characterized for limits of detection down to 1.3 μg · L-1, intraday relative standard deviations lower than 13 % (n = 3), and interday relative standard deviations lower than 17 % (n = 9), with a spiking level of 15 μg · L-1; with enrichment factors between 15.7 and 141, and average relative recoveries of 99.9 %.


Ionic liquids Double-salt ionic liquids Ionic-liquid-based surfactants Magnetic nanoparticles Mixed hemimicelles Dispersive solid-phase extraction 

Supplementary material

216_2015_9034_MOESM1_ESM.pdf (1.4 mb)
ESM 1(PDF 1451 kb)


  1. 1.
    Ho TD, Zhang C, Hantao LW, Anderson JL (2014) Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 86:262–285CrossRefGoogle Scholar
  2. 2.
    Chatel G, Pereira JFB, Debbeti V, Wang H, Rogers RD (2014) Mixing ionic liquids – “simple mixtures” or “double salts”? Green Chem 16:2051–2083CrossRefGoogle Scholar
  3. 3.
    Pino V, Germán-Hernández M, Martín-Pérez A, Anderson JL (2012) Ionic liquid–based surfactants in separation science. Sep Sci Technol 47:264–276CrossRefGoogle Scholar
  4. 4.
    Pino V, Yao C, Anderson JL (2009) Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent–water mixtures. J Colloid Interface Sci 333:548–556CrossRefGoogle Scholar
  5. 5.
    Basheer C, Alnedhary A, Rao BSM, Valliyaveettil S, Lee HK (2006) Development and application of porous membrane-protected carbon nanotube micro–solid-phase extraction combined with gas chromatography/mass spectrometry. Anal Chem 78:2853–2858CrossRefGoogle Scholar
  6. 6.
    Chen D, Zhao Y, Miao H, Wu Y (2015) A novel dispersive micro solid phase extraction using PCX as the sorbent for the determination of melamine and cyromazine in milk and milk powder by UHPLC–HRMS/MS. Talanta 134:144–152CrossRefGoogle Scholar
  7. 7.
    Spietelun A, Marcinkowski Ł, de la Guardia M, Namieśnik J (2013) Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J Chromatogr A 1321:1–13CrossRefGoogle Scholar
  8. 8.
    Cruz-Vera M, Lucena R, Cárdenas S, Valcárcel M (2011) Sample treatments based on dispersive (micro)extraction. Anal Methods 3:1719–1728CrossRefGoogle Scholar
  9. 9.
    Augusto F, Hantao LW, Mogollón NGS, Braga SCGN (2013) New materials and trends in sorbents for solid-phase extraction. Trends Anal Chem 43:14–23CrossRefGoogle Scholar
  10. 10.
    Wen Y, Chen L, Li J, Liu D, Chen L (2014) Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. Trends Anal Chem 59:26–41CrossRefGoogle Scholar
  11. 11.
    Moradl M, Yamini Y (2012) Surfactant roles in modern sample preparation techniques: a review. J Sep Sci 35:2319–2340CrossRefGoogle Scholar
  12. 12.
    Vidal L, Riekkola M-L, Canals A (2012) Ionic liquid–modified materials for solid-phase extraction and separation: a review. Anal Chim Acta 715:19–41CrossRefGoogle Scholar
  13. 13.
    Wang Z, Sun R, Wang Y, Li N, Lei L, Yang X, Yu A, Qiu F, Zhang H (2014) Determination of phenolic acids and flavonoids in raw propolis by silica-supported ionic liquid-based matrix solid phase dispersion extraction high performance liquid chromatography–diode array detection. J Chromatogr, B 969:205–212CrossRefGoogle Scholar
  14. 14.
    García-Prieto A, Lunar L, Rubio S, Pérez-Bendito D (2006) Hemimicelle-based solid-phase extraction of estrogens from environmental water samples. Analyst (Cambridge, U K) 131:407–414CrossRefGoogle Scholar
  15. 15.
    Xiao D, Yuan D, He H, Pham-Huy C, Dai H, Wang C, Zhang C (2014) Mixed hemimicelle solid-phase extraction based on magnetic carbon nanotubes and ionic liquids for the determination of flavonoids. Carbon 72:274–286CrossRefGoogle Scholar
  16. 16.
    Liu Q, Shi J, Wang T, Guo F, Liu L, Jiang G (2012) Hemimicelles/admicelles supported on magnetic graphene sheets for enhanced magnetic solid-phase extraction. J Chromatogr A 1257:1–8CrossRefGoogle Scholar
  17. 17.
    Jiao J, Zhang H, Yu L, Wang X, Wang R (2012) Decorating multi-walled carbon nanotubes with Au nanoparticles by amphiphilic ionic liquid self-assembly. Colloid Surf A 408:1–7CrossRefGoogle Scholar
  18. 18.
    Dong S, Huang G, Wang X, Hu Q, Huang T (2014) Magnetically mixed hemimicelles solid-phase extraction based on ionic liquid–coated Fe3O4 nanoparticles for the analysis of trace organic contaminants in water. Anal Methods 6:6783–6788CrossRefGoogle Scholar
  19. 19.
    Parham H, Saeed S (2014) Ultrasound-assisted solid phase extraction of nitro- and chloro-(phenols) using magnetic iron oxide nanoparticles and Aliquat 336 ionic liquid. J Chromatogr A 1336:34–42CrossRefGoogle Scholar
  20. 20.
    Chen J, Zhu X (2015) Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples. Spectrochim Acta Mol Biomol Spectrosc 137:456–462CrossRefGoogle Scholar
  21. 21.
    Wierucka M, Biziuk M (2014) Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Anal Chem 59:50–58CrossRefGoogle Scholar
  22. 22.
    Yan H, Gao M, Yang C, Qiu M (2014) Ionic liquid-modified magnetic polymeric microspheres as dispersive solid phase extraction adsorbent: a separation strategy applied to the screening of sulfamonomethoxine and sulfachloropyrazine from urine. Anal Bioanal Chem 406:2669–2677CrossRefGoogle Scholar
  23. 23.
    Baltazar QQ, Chandawalla J, Sawyer K, Anderson JL (2007) Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf A Physicochem Eng Asp 302:150–156CrossRefGoogle Scholar
  24. 24.
    Nacham O, Martín-Pérez A, Steyer DJ, Trujillo-Rodríguez MJ, JAnderson JL, Pino V, Afonso AM (2015) Interfacial and aggregation behavior of dicationic and tricationic ionic liquid–based surfactants in aqueous solution. Colloids Surf A Physicochem Eng Asp 469:224–234CrossRefGoogle Scholar
  25. 25.
    Rice EW, Baird RB, Eaton AD, Clesceri LS (2012) Standard methods for the examination of water and wastewater. American Water Works Association, DenverGoogle Scholar
  26. 26.
    Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8:2209–2211CrossRefGoogle Scholar
  27. 27.
    Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46:11499–11504CrossRefGoogle Scholar
  28. 28.
    Rosen MJ, Kunjappu JT (1978) Surfactants and interfacial phenomena. Wiley, New YorkGoogle Scholar
  29. 29.
    Delgado B, Pino V, Anderson JL, Ayala JH, Afonso AM, González V (2012) An in-situ extraction–preconcentration method using ionic liquid − based surfactants for the determination of organic contaminants contained in marine sediments. Talanta 99:972–983CrossRefGoogle Scholar
  30. 30.
    Liu X, Lu X, Huang Y, Liu C, Zhao S (2014) Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples. Talanta 119:341–347CrossRefGoogle Scholar
  31. 31.
    Zhang Q, Yang F, Tang F, Zeng K, Wu K, Ca Q, Yao S (2010) Ionic liquid − coated Fe3O4 magnetic nanoparticles as an adsorbent of mixed hemimicelles solid-phase extraction for preconcentration of polycyclic aromatic hydrocarbons in environmental samples. Analyst (Cambridge, U K) 135:2426–2433CrossRefGoogle Scholar
  32. 32.
    Zhao X, Shi Y, Wang T, Cai Y, Jiang G (2008) Preparation of silica − magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J Chromatogr A 1188:140–147CrossRefGoogle Scholar
  33. 33.
    Cheng Q, Qu F, Li NB, Luo HQ (2012) Mixed hemimicelles solid-phase extraction of chlorophenols in environmental water samples with 1-hexadecyl-3-methylimidazolium bromide − coated Fe3O4 magnetic nanoparticles with high-performance liquid chromatographic analysis. Anal Chim Acta 715:113–119CrossRefGoogle Scholar
  34. 34.
    He H, Yuan D, Gao Z, Xiao D, He H, Dai H, Peng J, Li N (2014) Mixed hemimicelles solid-phase extraction based on ionic liquid − coated Fe3O4/SiO2 nanoparticles for the determination of flavonoids in bio-matrix samples coupled with high performance liquid chromatography. J Chromatogr A 1324:78–85CrossRefGoogle Scholar
  35. 35.
    Trujillo-Rodríguez MJ, Rocío − Bautista P, Pino V, Afonso AM (2013) Ionic liquids in dispersive liquid − liquid microextraction. Trends Anal Chem 51:87–106CrossRefGoogle Scholar
  36. 36.
    AOAC Peer-Verified Methods Program (1998) Manual on policies and procedures. AOAC International, GaithersburgGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • María J. Trujillo-Rodríguez
    • 1
  • Verónica Pino
    • 1
  • Jared L. Anderson
    • 2
  • Juan H. Ayala
    • 1
  • Ana M. Afonso
    • 1
  1. 1.Área de Química Analítica, Departamento de QuímicaUniversidad de La LagunaLa Laguna (Tenerife)Spain
  2. 2.Department of ChemistryIowa State UniversityAmesUSA

Personalised recommendations