Analytical and Bioanalytical Chemistry

, Volume 407, Issue 27, pp 8311–8320 | Cite as

Characterisation of a fibre optic Raman probe within a hypodermic needle

  • Ingeborg E. Iping Petterson
  • John C. C. Day
  • Leanne M. Fullwood
  • Benjamin Gardner
  • Nick Stone
Research Paper
Part of the following topical collections:
  1. Raman4Clinics


We demonstrate the first use of a multifibre Raman probe that fits inside the bore of a hypodermic needle. A Raman probe containing multiple collection fibres provides improved signal collection efficiency in biological samples compared with a previous two-fibre design. Furthermore, probe performance (signal-to-noise ratios) compared favourably with the performance achieved in previous Raman microscope experiments able to distinguish between benign lymph nodes, primary malignancies in lymph nodes and secondary malignancies in lymph nodes. The experimental measurements presented here give an indication of the sampling volume of the Raman needle probe in lymphoid tissues. Liquid tissue phantoms were used that contained scattering medium encompassing a range of scattering properties similar to those of a variety of tissue types, including lymph node tissues. To validate the appropriateness of the phantoms, the sampling depth of the probe was also measured in excised lymph node tissue. More than 50 % of Raman photons collected were found to originate from between the tip of the needle and a depth of 500 μm into the tissue. The needle probe presented here achieves spectral quality comparable to that in numerous studies previously demonstrating Raman disease discrimination. It is expected that this approach could achieve targeted subcutaneous tissue measurements and be viable for use for the in vivo Raman diagnostics of solid organs located within a few centimetres below the skin’s surface.

Graphical Abstract

Schematic of multi-fibre Raman needle probe with disposible tips and proximal optical filtration


Non-invasive Diagnostics Needle Raman spectroscopy Lymph nodes 



The authors thank Martha Vardaki for India ink characterisation and Gloucester Hospitals NHS Foundation Trust for providing the excised human lymph node tissue. This work was funded by a UK National Institute for Health Research Invention for Innovation (i4i) grant, number II_LA_1111_20007.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2015_9021_MOESM1_ESM.pdf (72 kb)
ESM 1 (PDF 71 kb)


  1. 1.
    Ellis DI, Cowcher DP, Ashton L, O'Hagan S, Goodacre R (2013) Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 138(14):3871–3884CrossRefGoogle Scholar
  2. 2.
    Talari ACS, Movasaghi Z, Rehman S, Rheman IU (2014) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 50:46–111CrossRefGoogle Scholar
  3. 3.
    Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5(3):259–268CrossRefGoogle Scholar
  4. 4.
    Hanlon EB, Manoharan R, Koo T-W, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45(2):R1–R59CrossRefGoogle Scholar
  5. 5.
    Stone N, Kendall C, Shepherd N, Crow P, Barr H (2002) Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. J Raman Spectrosc 33:564–573CrossRefGoogle Scholar
  6. 6.
    Matousek P, Morris MD, Everall N, Clark IP, Towrie M, Draper E, Goodship A, Parker AW (2005) Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc 59(12):1485–1492CrossRefGoogle Scholar
  7. 7.
    Everall N, Hahn T, Matousek P, Parker AW, Towrie M (2004) Photon migration in Raman spectroscopy. Appl Spectrosc 58(5):591–597CrossRefGoogle Scholar
  8. 8.
    Matousek P, Stone N (2009) Emerging concepts in deep Raman spectroscopy of biological tissue. Analyst 134:1058–1066CrossRefGoogle Scholar
  9. 9.
    Matousek P, Clark IP, Draper ERC, Morris MD, Goodship AE, Everall N, Towrie M, Finney WF, Parker AW (2005) Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc 59(4):393–400CrossRefGoogle Scholar
  10. 10.
    Matousek P, Stone N (2008) Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. Cancer Res 68:4424CrossRefGoogle Scholar
  11. 11.
    Matousek P, Everall N, Towrie M, Parker AW (2005) Depth profiling in diffusely scattering media using Raman spectroscopy and picosecond Kerr gating. Appl Spectrosc 59(2):200–205CrossRefGoogle Scholar
  12. 12.
    Iping Petterson IE, Dvořák P, Buijs J, Gooijer C, Ariese F (2010) Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers. Analyst 135(12):3255–3259CrossRefGoogle Scholar
  13. 13.
    Matousek P, Stone N (2013) Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis. J Biophotonics 6(1):7–19CrossRefGoogle Scholar
  14. 14.
    Draga ROP, Grimbergen MCM, Vijverberg PLM, van Swol CFP, Jonges TGN, Kummer JA, Bosch JLHR (2010) In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal Chem 82:5993–5999CrossRefGoogle Scholar
  15. 15.
    Magee ND, Villaumie JS, Marple ET, Ennis M, Elborn JS, McGarvey JJ (2009) Ex vivo diagnosis of lung cancer using a Raman miniprobe. J Phys Chem B 113:8137–8141CrossRefGoogle Scholar
  16. 16.
    Matthäus C, Dochow S, Bergner G, Lattermann A, Romeike BFM, Marple ET, Krafft C, Dietzek B, Brehm BR, Popp J (2012) In vivo characterization of atherosclerotic plaque depositions by Raman-probe spectroscopy and in vitro coherent anti-stokes Raman scattering microscopic imaging on a rabbit model. Anal Chem 84:7845–7851CrossRefGoogle Scholar
  17. 17.
    Agenant M, Grimbergen M, Draga R, Marple E, Bosch R, van Swol C (2014) Clinical superficial Raman probe aimed for epithelial tumor detection: phantom model results. Biomed Opt Express 5(4):1203–1216CrossRefGoogle Scholar
  18. 18.
    Almond LM, Hutchings J, Kendall C, Day JCC, Stevens OAC, Lloyd GR, Shepherd NA, Barr H, Stone N (2012) Assessment of a custom-built Raman spectroscopic probe for diagnosis of early oesophageal neoplasia. J Biomed Opt 17(8):081421CrossRefGoogle Scholar
  19. 19.
    Shim MG, Wilson BC, Marple E, Wach M (1999) Study of fibre-optic probes for in vivo medical Raman spectroscopy. Appl Spectrosc 53(6):619–627CrossRefGoogle Scholar
  20. 20.
    Huang Z, Zeng H, Hamzavi I, McLean DI, Lui H (2001) Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements. Opt Lett 26(22):1782–1784CrossRefGoogle Scholar
  21. 21.
    Komachi Y, Katagiri T, Sato H, Tashiro H (2009) Improvement and analysis of a micro Raman probe. Appl Opt 48:1683–1696CrossRefGoogle Scholar
  22. 22.
    Mahadevan-Jansen A, Mitchell MF, Ramanujam N, Utzinger U, Richards-Kortum R (1998) Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo. Photochem Photobiol 68:427–431CrossRefGoogle Scholar
  23. 23.
    Shim M, Song LMWK, Marcon NE, Wilson BC (2000) In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochem Photobiol 72(1):146–150Google Scholar
  24. 24.
    Utzinger U, Richards-Kortum RR (2003) Fiber optic probes for biomedical optical spectroscopy. J Biomed Opt 8(1):121–147CrossRefGoogle Scholar
  25. 25.
    Day JCC, Stone N (2013) A subcutaneous Raman needle probe. Appl Spectrosc 67(3):349–354CrossRefGoogle Scholar
  26. 26.
    Cooney TF, Skinner HT, Angel SM (1996) Comparative study of some fiber-optic remote Raman probe designs. Part II: tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes. Appl Spectrosc 50(7):849–860CrossRefGoogle Scholar
  27. 27.
    Tai DCS, Hooks DA, Harvey JD, Smaill BH, Soeller C (2007) Illumination and fluorescence collection volumes for fiber optic probes in tissue. J Biomed Opt 12(3):034033CrossRefGoogle Scholar
  28. 28.
    Lloyd GR, Orr LE, Christie-Brown J, McCarthy K, Rose S, Thomas M, Stone N (2013) Discrimination between benign, primary and secondary malignancies in lymph nodes from the head and neck utilising Raman spectroscopy and multivariate analysis. Analyst 138:3900–3908CrossRefGoogle Scholar
  29. 29.
    Horsnell J, Stonelake P, Christie-Brown J, Shetty G, Hutchings J, Kendall C, Stone N (2010) Raman spectroscopy—a new method for the intra-operative assessment of axillary lymph nodes. Analyst 135:3042–3047CrossRefGoogle Scholar
  30. 30.
    Horsnell JD, Smith JA, Sattlecker M, Sammon A, Christie-Brown J, Kendall C, Stone N (2012) Raman spectroscopy—a potential new method for the intra-operative assessment of axillary lymph nodes. Surgeon 10:123–127CrossRefGoogle Scholar
  31. 31.
    The Engineering ToolBox. Smaller circles in larger circles. Accessed 9 Dec 2014
  32. 32.
    Sadhwani A, Schomacker KT, Tearney GJ, Nishioka NS (1996) Determination of Teflon thickness with laser speckle. I. Potential for burn depth diagnosis. Appl Opt 35(28):5727–5735CrossRefGoogle Scholar
  33. 33.
    Iping Petterson IE, Ariese F (2012) Time-resolved Raman spectroscopy for non-invasive detection through non-transparent materials. Spectrosc Eur 24(1):19–21Google Scholar
  34. 34.
    Aernouts B, Van Beers R, Watté R, Lammertyn J, Saeys W (2014) Dependent scattering in Intralipid® phantoms in the 600-1850 nm range. Opt Express 22(5):6086–6098CrossRefGoogle Scholar
  35. 35.
    Royston DD, Poston RS, Prahl SA (1996) Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm. J Biomed Opt 1(1):110–116CrossRefGoogle Scholar
  36. 36.
    Di Ninni P, Martelli F, Zaccanti G (2011) Intralipid: towards a diffusive reference standard for optical tissue phantoms. Phys Med Biol 56:N21–N28CrossRefGoogle Scholar
  37. 37.
    Spinelli L, Botwicz M, Zolek N, Kacprzak M, Milej D, Liebert A, Weigel U, Durduran T, Foschum F, Kienle A, Baribeau F, Leclair S, Bouchard J-P, Noiseux I, Gallant P, Mermut O, Pifferi A, Torricelli A, Cubeddu R, Ho H-C, Mazurenka M, Wabnitz H, Klauenberg K, Bodnar O, Elster C, Bénazech-Lavoué M, Bérubé-Lauzière Y, Lesage F, Di Ninni P, Martelli F, Zaccanti G (2012) Inter-laboratory comparison of optical properties performed on intralipid and India ink. In: Biomedical optics and 3-D imaging, OSA technical digest. Optical Society of America, Washington, paper BW1A.6Google Scholar
  38. 38.
    Pogue BW, Patterson MS (2006) Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt 11(4):0411021–04110216CrossRefGoogle Scholar
  39. 39.
    Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58:R37–R61CrossRefGoogle Scholar
  40. 40.
    Cubeddu R, Pifferi A, Taroni P, Torricelli A, Valentini G (1997) A solid tissue phantom for photon migration studies. Phys Med Biol 42:1971–1979CrossRefGoogle Scholar
  41. 41.
    Michels R, Foschum F, Kienle A (2008) Optical properties of fat emulsions. Opt Express 16(8):5907CrossRefGoogle Scholar
  42. 42.
    Madsen SJ, Patterson MS, Wilson BC (1992) The use of India ink as an optical absorber in tissue-simulating phantoms. Phys Med Biol 31(4):985–993CrossRefGoogle Scholar
  43. 43.
    Di Ninni P, Martelli F, Zaccanti G (2010) The use of India ink in tissue-simulating phantoms. Opt Express 18(26):26860CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ingeborg E. Iping Petterson
    • 1
    • 2
  • John C. C. Day
    • 2
  • Leanne M. Fullwood
    • 1
    • 3
  • Benjamin Gardner
    • 1
  • Nick Stone
    • 1
    • 3
  1. 1.Biomedical Physics, School of Physics and AstronomyUniversity of ExeterExeterUK
  2. 2.Interface Analysis Centre, H.H. Wills Physics LaboratoryUniversity of BristolBristolUK
  3. 3.Biophotonics Research UnitGloucestershire Hospitals NHS Foundation TrustGloucesterUK

Personalised recommendations