Analytical and Bioanalytical Chemistry

, Volume 407, Issue 28, pp 8543–8556 | Cite as

Novel “omics” approach for study of low-abundance, low-molecular-weight components of a complex biological tissue: regional differences between chorionic and basal plates of the human placenta

  • Komal Kedia
  • Caitlin A. Nichols
  • Craig D. Thulin
  • Steven W. GravesEmail author
Research Paper


Tissue proteomics has relied heavily on two-dimensional gel electrophoresis, for protein separation and quantification, then single protein isolation, trypsin digestion, and mass spectrometric protein identification. Such methods are predominantly used for study of high-abundance, full-length proteins. Tissue peptidomics has recently been developed but is still used to study the most highly abundant species, often resulting in observation and identification of dozens of peptides only. Tissue lipidomics is likewise new, and reported studies are limited. We have developed an “omics” approach that enables over 7,000 low-molecular-weight, low-abundance species to be surveyed and have applied this to human placental tissue. Because the placenta is believed to be involved in complications of pregnancy, its proteomic evaluation is of substantial interest. In previous research on the placental proteome, abundant, high-molecular-weight proteins have been studied. Application of large-scale, global proteomics or peptidomics to the placenta have been limited, and would be challenging owing to the anatomic complexity and broad concentration range of proteins in this tissue. In our approach, involving protein depletion, capillary liquid chromatography, and tandem mass spectrometry, we attempted to identify molecular differences between two regions of the same placenta with only slightly different cellular composition. Our analysis revealed 16 species with statistically significant differences between the two regions. Tandem mass spectrometry enabled successful sequencing, or otherwise enabled chemical characterization, of twelve of these. The successful discovery and identification of regional differences between the expression of low-abundance, low-molecular weight biomolecules reveals the potential of our approach.


Tissue proteomics Capillary liquid chromatography–MS Low-molecular-weight proteins Placenta Peptidomics Lipids 



This work was supported by the Department of Chemistry and Biochemistry, Brigham Young University. The authors would like to extend their gratitude to several individuals who participated in parts of this study: Dr Moana Hopoate-Sitake, Bruce Jackson, Jody Jones, Dr M. Sean Esplin, and the Mass Spectrometry Facility at BYU. We gratefully acknowledge the support provided by Intermountain Health Care (IHC) hospitals in making placental tissue samples available.

Conflict of interest

The authors declare no competing financial considerations or other conflicts of interest.

Supplementary material

216_2015_9009_MOESM1_ESM.pdf (761 kb)
ESM 1 (PDF 761 kb)


  1. 1.
    Chen J, Kahne T, Rocken C, Gotze T, Yu J, Sung JJY, Chen M, Hu P, Malfertheiner P, Ebert MPA (2004) Proteome analysis of gastric cancer metastasis by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization–mass spectrometry for identification of metastasis-related proteins. J Proteome Res 3(5):1009–1016. doi: 10.1021/pr049916l CrossRefGoogle Scholar
  2. 2.
    Kim J, Kim SH, Lee SU, Ha GH, Kang DG, Ha NY, Ahn JS, Cho HY, Kang SJ, Lee YJ, Hong SC, Ha WS, Bae JM, Lee CW, Kim JW (2002) Proteome analysis of human liver tumor tissue by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization–mass spectrometry for identification of disease-related proteins. Electrophoresis 23(24):4142–4156CrossRefGoogle Scholar
  3. 3.
    Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247CrossRefGoogle Scholar
  4. 4.
    Kline KG, Wu CC (2009) MudPIT analysis: application to human heart tissue. Methods Mol Biol 528:281–293CrossRefGoogle Scholar
  5. 5.
    Catherman AD, Skinner OS, Kelleher NL (2014) Top Down proteomics: facts and perspectives. Biochem Biophys Res Commun 445(4):683–693. doi: 10.1016/j.bbrc.2014.02.041 CrossRefGoogle Scholar
  6. 6.
    Catherman AD, Durbin KR, Ahlf DR, Early BP, Fellers RT, Tran JC, Thomas PM, Kelleher NL (2013) Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence. Mol Cell Proteomics MCP 12(12):3465–3473. doi: 10.1074/mcp.M113.030114 CrossRefGoogle Scholar
  7. 7.
    Heroux MS, Chesnik MA, Halligan BD, Al-Gizawiy M, Connelly JM, Mueller WM, Rand SD, Cochran EJ, LaViolette PS, Malkin MG, Schmainda KM, Mirza SP (2014) Comprehensive characterization of glioblastoma tumor tissues for biomarker identification using mass spectrometry-based label-free quantitative proteomics. Physiol Genomics 46(13):467–481CrossRefGoogle Scholar
  8. 8.
    Wardman J, Fricker LD (2011) Quantitative peptidomics of mice lacking peptide-processing enzymes. Methods Mol Biol 768:307–323CrossRefGoogle Scholar
  9. 9.
    Che FY, Fricker LD (2005) Quantitative peptidomics of mouse pituitary: comparison of different stable isotopic tags. J Mass Spectrom 40(2):238–249CrossRefGoogle Scholar
  10. 10.
    Tajima Y, Ishikawa M, Maekawa K, Murayama M, Senoo Y, Nishimaki-Mogami T, Nakanishi H, Ikeda K, Arita M, Taguchi R, Okuno A, Mikawa R, Niida S, Takikawa O, Saito Y (2013) Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimer's disease. Lipids Health Dis 12:68. doi: 10.1186/1476-511x-12-68 CrossRefGoogle Scholar
  11. 11.
    Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, Small SA, Wenk MR, Shui G, Di Paolo G (2012) Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J Biol Chem 287(4):2678–2688. doi: 10.1074/jbc.M111.274142 CrossRefGoogle Scholar
  12. 12.
    Korkes HA, Sass N, Moron AF, Câmara NOS, Bonetti T, Cerdeira AS, Da Silva IDCG, De Oliveira L (2014) Lipidomic assessment of plasma and placenta of women with early-onset preeclampsia. PLoS ONE 9(10), e110747. doi: 10.1371/journal.pone.0110747 CrossRefGoogle Scholar
  13. 13.
    Alvarez MT, Shah DJ, Thulin CD, Graves SW (2013) Tissue proteomics of the low-molecular weight proteome using an integrated cLC-ESI-QTOFMS approach. Proteomics 13(9):1400–1411CrossRefGoogle Scholar
  14. 14.
    Esplin MS, Merrell K, Goldenberg R, Lai Y, Iams JD, Mercer B, Spong CY, Miodovnik M, Simhan HN, van Dorsten P, Dombrowski M (2010) Proteomic identification of serum peptides predicting subsequent spontaneous preterm birth. Am J Obstet Gynecol 204(5):391.e391–391.e398. doi: 10.1016/j.ajog.2010.09.021 Google Scholar
  15. 15.
    Merrell K, Thulin CD, Esplin MS, Graves SW (2009) An integrated serum proteomic approach capable of monitoring the low molecular weight proteome with sequencing of intermediate to large peptides. Rapid Commun Mass Spectrom 23(17):2685–2696CrossRefGoogle Scholar
  16. 16.
    Roberts DJ, Post MD (2008) The placenta in pre-eclampsia and intrauterine growth restriction. J Clin Pathol 61(12):1254–1260. doi: 10.1136/jcp.2008.055236 CrossRefGoogle Scholar
  17. 17.
    Prouillac C, Lecoeur S (2010) The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab Dispos 38(10):1623–1635. doi: 10.1124/dmd.110.033571 CrossRefGoogle Scholar
  18. 18.
    Benirschke K, Kaufmann P, Baergen RN (2006) Pathology of the human placenta, 5th edn. Springer, NYGoogle Scholar
  19. 19.
    Hwang HS, Park SH, Park YW, Kwon HS, Sohn IS (2010) Expression of cellular prion protein in the placentas of women with normal and preeclamptic pregnancies. Acta Obstet Gynecol Scand 89(9):1155–1161CrossRefGoogle Scholar
  20. 20.
    Damsky CH, Fitzgerald ML, Fisher SJ (1992) Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J Clin Invest 89(1):210–222CrossRefGoogle Scholar
  21. 21.
    Reimel BA, Pan S, May DH, Shaffer SA, Goodlett DR, McIntosh MW, Yerian LM, Bronner MP, Chen R, Brentnall TA (2009) Proteomics on fixed tissue specimens—a review. Curr Proteomics 6(1):63–69CrossRefGoogle Scholar
  22. 22.
    Robinson JM, Vandre DD, Ackerman WE (2009) Placental proteomics: a shortcut to biological insight. Placenta 30(9):13Google Scholar
  23. 23.
    Centlow M, Hansson SR, Welinder C (2009) Differential proteome analysis of the preeclamptic placenta using optimized protein extraction. J Biomed Biotechnol 2010 (2010). doi: 10.1155/2010/458748
  24. 24.
    Wang F, Shi Z, Wang P, You W, Liang G (2013) Comparative proteome profile of human placenta from normal and preeclamptic pregnancies. PLoS ONE 8(10):2013Google Scholar
  25. 25.
    Dunn WB, Brown M, Worton SA, Crocker IP, Broadhurst D, Horgan R, Kenny LC, Baker PN, Kell DB, Heazell AE (2009) Changes in the metabolic footprint of placental explant-conditioned culture medium identifies metabolic disturbances related to hypoxia and pre-eclampsia. Placenta 30(11):974–980CrossRefGoogle Scholar
  26. 26.
    Andersen HU, Fey SJ, Larsen PM, Nawrocki A, Hejnaes KR, Mandrup-Poulsen T, Nerup J (1997) Interleukin-1beta induced changes in the protein expression of rat islets: a computerized database. Electrophoresis 18(11):2091–2103. doi: 10.1002/elps.1150181136 CrossRefGoogle Scholar
  27. 27.
    Schröder S, Zhang H, Yeung ES, Jänsch L, Zabel C, Wätzig H (2008) Quantitative gel electrophoresis: sources of variation. J Proteome Res 7(3):1226–1234. doi: 10.1021/pr700589s CrossRefGoogle Scholar
  28. 28.
    Mazur MT, Cardasis HL, Spellman DS, Liaw A, Yates NA, Hendrickson RC (2010) Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry. Proc Natl Acad Sci U S A 107(17):7728–7733CrossRefGoogle Scholar
  29. 29.
    Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17(20):2337–2342CrossRefGoogle Scholar
  30. 30.
    Xu F, Zou L, Lin Q, Ong CN (2009) Use of liquid chromatography/tandem mass spectrometry and online databases for identification of phosphocholines and lysophosphatidylcholines in human red blood cells. Rapid Commun Mass Spectrom 23(19):3243–3254CrossRefGoogle Scholar
  31. 31.
    Al-Saad KA, Siems WF, Hill HH, Zabrouskov V, Knowles NR (2003) Structural analysis of phosphatidylcholines by post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom 14(4):373–382CrossRefGoogle Scholar
  32. 32.
    Shi Z, Long W, Zhao C, Guo X, Shen R, Ding H (2013) Comparative proteomics analysis suggests that placental mitochondria are involved in the development of pre-eclampsia. PLoS ONE 8(5):2013Google Scholar
  33. 33.
    DeSouza L, Diehl G, Rodrigues MJ, Guo J, Romaschin AD, Colgan TJ, Siu KW (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 4(2):377–386CrossRefGoogle Scholar
  34. 34.
    Kelleher NL (2004) Top-down proteomics. Anal Chem 76(11):197A–203ACrossRefGoogle Scholar
  35. 35.
    Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R (2002) Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J Proteome Res 1(1):47–54CrossRefGoogle Scholar
  36. 36.
    Xu Z, Wu C, Xie F, Slysz GW, Tolic N, Monroe ME, Petyuk VA, Payne SH, Fujimoto GM, Moore RJ, Fillmore TL, Schepmoes AA, Levine DA, Townsend RR, Davies SR, Li S, Ellis M, Boja E, Rivers R, Rodriguez H, Rodland KD, Liu T, Smith RD (2014) Comprehensive quantitative analysis of ovarian and breast cancer tumor peptidomes. J Proteome Res 14(1):422–433. doi: 10.1021/pr500840w CrossRefGoogle Scholar
  37. 37.
    Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS–MS. J Proteome Res 10(4):1785–1793. doi: 10.1021/pr101060v CrossRefGoogle Scholar
  38. 38.
    Paule S, Li Y, Nie G (2011) Cytoskeletal remodelling proteins identified in fetal–maternal interface in pregnant women and rhesus monkeys. J Mol Histol 42(2):161–166CrossRefGoogle Scholar
  39. 39.
    Orendi K, Kivity V, Sammar M, Grimpel Y, Gonen R, Meiri H, Lubzens E, Huppertz B (2011) Placental and trophoblastic in vitro models to study preventive and therapeutic agents for preeclampsia. Placenta 2011(32):023Google Scholar
  40. 40.
    Mutter WP, Karumanchi SA (2008) Molecular mechanisms of preeclampsia. Microvasc Res 75(1):1–8CrossRefGoogle Scholar
  41. 41.
    Bauer DE, Orkin SH (2011) Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr Opin Pediatr 23(1):1–8. doi: 10.1097/MOP.0b013e3283420fd0 CrossRefGoogle Scholar
  42. 42.
    Seydewitz HH, Witt I (1989) The fraction of high molecular weight (HMW) fibrinogen and phosphorylated fibrinopeptide A in fetal fibrinogen. Thromb Res 55(6):785–790CrossRefGoogle Scholar
  43. 43.
    Maurer MC, Peng JL, An SS, Trosset JY, Henschen-Edman A, Scheraga HA (1998) Structural examination of the influence of phosphorylation on the binding of fibrinopeptide A to bovine thrombin. Biochemistry 37(17):5888–5902CrossRefGoogle Scholar
  44. 44.
    Lu G, Zhu S, Ke Y, Jiang X, Zhang S (2013) Transplantation-potential-related biological properties of decidua basalis mesenchymal stem cells from maternal human term placenta. Cell Tissue Res 352(2):301–312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Komal Kedia
    • 1
  • Caitlin A. Nichols
    • 1
  • Craig D. Thulin
    • 2
  • Steven W. Graves
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryBrigham Young UniversityProvoUSA
  2. 2.Department of ChemistryUtah Valley UniversityOremUSA

Personalised recommendations