Analytical and Bioanalytical Chemistry

, Volume 407, Issue 26, pp 8109–8120 | Cite as

Development of a recombinant Arxula adeninivorans cell bioassay for the detection of molecules with progesterone activity in wastewater

  • Alexandre Chamas
  • Annabel Nieter
  • Ha Thi Minh Pham
  • Martin Giersberg
  • Karina Hettwer
  • Steffen Uhlig
  • Kirsten Simon
  • Keith Baronian
  • Gotthard KunzeEmail author
Research Paper


This study describes the development of a bioassay to detect the presence of progesterone and progesterone-like molecules in wastewater samples. The basis of the bioassay is the integration of the human progesterone receptor gene into the yeast Arxula adeninivorans for the constitutive synthesis of the receptor. After incubation, binding of the analyte to the receptor induces the production of a reporter protein. Two reporter proteins were compared for detection parameters such as half-maximal activity (EC50), limit of detection (LoD) and limit of quantification (LoQ). When the extracellular phytase K was used, an EC50 value of 155 ng L−1 and a LoD of 27 ng L−1 progesterone were obtained after 4 h incubation, while use of the fluorescent dsRED as the reporter protein, resulted in an EC50 of 320 ng L−1 and a LoD of 65 ng L−1 after 20 h incubation. Use of phytase K as the reporter protein offers decreased incubation time and increased sensitivity; however the dsRED reporter system is less labor-intensive. Additionally, the affinity of known agonists and antagonists of the human progesterone receptor was determined. The utility of this bioassay was confirmed by measuring total progesterone equivalent concentration of samples from a wastewater treatment plant. The A. adeninivorans-based transactivation assay was able to measure concentrations of about 311 ng L−1 in the influent stream but could not detect progesterone activity in effluent. One key feature of the assay is the robustness of A. adeninivorans, which allows sample measurement without any sample preparation.


Progesterone Arxula adeninivorans Transactivation assay Reed-bed wastewater treatment plant 



We would like to thank Ruth Franz for her technical support. The research work was supported by grant from the BMWi (Grant No. KF2131610MD0 and KF2131626SB4).

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Brian JV, Harris CA, Scholze M, Kortenkamp A, Booy P, Lamoree M, Pojana G, Jonkers N, Marcomini A, Sumpter JP (2007) Evidence of estrogenic mixture effects on the reproductive performance of fish. Environ Sci Technol 41(1):337–344CrossRefGoogle Scholar
  2. 2.
    Parrott JL, Blunt BR (2005) Life-cycle exposure of fathead minnows (Pimephales promelas) to an ethinylestradiol concentration below 1 ng/L reduces egg fertilization success and demasculinizes males. Environ Toxicol 20(2):131–141CrossRefGoogle Scholar
  3. 3.
    Luccio-Camelo DC, Prins GS (2011) Disruption of androgen receptor signaling in males by environmental chemicals. J Steroid Biochem Mol Biol 127(1–2):74–82CrossRefGoogle Scholar
  4. 4.
    Teng C, Goodwin B, Shockley K, Xia M, Huang R, Norris J, Merrick BA, Jetten AM, Austin CP, Tice RR (2013) Bisphenol A affects androgen receptor function via multiple mechanisms. Chem Biol Interact 203(3):556–564CrossRefGoogle Scholar
  5. 5.
    Brambilla G, Martelli A (2002) Are some progestins genotoxic liver carcinogens? Mutat Res Rev Mutat Res 512(2–3):155–163CrossRefGoogle Scholar
  6. 6.
    Besse JP, Garric J (2009) Progestagens for human use, exposure and hazard assessment for the aquatic environment. Environ Pollut 157(12):3485–3494CrossRefGoogle Scholar
  7. 7.
    Paulos P, Runnalls TJ, Nallani G, La Point T, Scott AP, Sumpter JP, Huggett DB (2010) Reproductive responses in fathead minnow and Japanese medaka following exposure to a synthetic progestin, Norethindrone. Aquat Toxicol 99(2):256–262CrossRefGoogle Scholar
  8. 8.
    Pietsch C, Neumann N, Preuer T, Kloas W (2011) In vivo treatment with progestogens causes immunosuppression of carp Cyprinus carpio leucocytes by affecting nitric oxide production and arginase activity. J Fish Biol 79(1):53–69CrossRefGoogle Scholar
  9. 9.
    Zeilinger J, Steger-Hartmann T, Maser E, Goller S, Vonk R, Lange R (2009) Effects of synthetic gestagens on fish reproduction. Environ Toxicol Chem 28(12):2663–2670CrossRefGoogle Scholar
  10. 10.
    Scippo ML, Argiris C, Van De Weerdt C, Muller M, Willemsen P, Martial J, Maghuin-Rogister G (2004) Recombinant human estrogen, androgen and progesterone receptors for detection of potential endocrine disruptors. Anal Bioanal Chem 378(3):664–669CrossRefGoogle Scholar
  11. 11.
    Liu S, Ying GG, Zhao JL, Chen F, Yang B, Zhou LJ, Lai HJ (2011) Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr 1218(10):1367–1378CrossRefGoogle Scholar
  12. 12.
    Chimchirian RF, Suri RP, Fu H (2007) Free synthetic and natural estrogen hormones in influent and effluent of three municipal wastewater treatment plants. Water Environ Res 79(9):969–974CrossRefGoogle Scholar
  13. 13.
    Velicu M, Suri R (2009) Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed-use areas. Environ Monit Assess 154(1–4):349–359CrossRefGoogle Scholar
  14. 14.
    Pu C, Wu YF, Yang H, Deng AP (2008) Trace analysis of contraceptive drug levonorgestrel in wastewater samples by a newly developed indirect competitive enzyme-linked immunosorbent assay (ELISA) coupled with solid phase extraction. Anal Chim Acta 628(1):73–79CrossRefGoogle Scholar
  15. 15.
    Qiao YW, Yang H, Wang B, Song J, Deng AP (2009) Preparation and characterization of an immunoaffinity chromatography column for the selective extraction of trace contraceptive drug levonorgestrel from water samples. Talanta 80(1):98–103CrossRefGoogle Scholar
  16. 16.
    Fayad PB, Prevost M, Sauve S (2010) Laser diode thermal desorption/atmospheric pressure chemical ionization tandem mass spectrometry analysis of selected steroid hormones in wastewater: method optimization and application. Anal Chem 82(2):639–645CrossRefGoogle Scholar
  17. 17.
    Viglino L, Prevost M, Sauve S (2011) High throughput analysis of solid-bound endocrine disruptors by LDTD-APCI-MS/MS. J Environ Monit 13(3):583–590CrossRefGoogle Scholar
  18. 18.
    Claycomb RW, Delwiche MJ (1998) Biosensor for on-line measurement of bovine progesterone during milking. Biosens Bioelectron 13(11):1173–1180CrossRefGoogle Scholar
  19. 19.
    Kreuzer MP, McCarthy R, Pravda M, Guilbault GG (2004) Development of electrochemical immunosensor for progesterone analysis in milk. Anal Lett 37(5):943–956CrossRefGoogle Scholar
  20. 20.
    Pemberton RM, Hart JP, Mottram TT (2001) An electrochemical immunosensor for milk progesterone using a continuous flow system. Biosens Bioelectron 16(9–12):715–723CrossRefGoogle Scholar
  21. 21.
    Gillis EH, Gosling JP, Sreenan JM, Kane M (2002) Development and validation of a biosensor-based immunoassay for progesterone in bovine milk. J Immunol Methods 267(2):131–138CrossRefGoogle Scholar
  22. 22.
    Sananikone K, Delwiche MJ, BonDurant RH, Munro CJ (2004) Quantitative lateral flow immunoassay for measuring progesterone in bovine milk. Trans ASAE 47(4):1357–1365CrossRefGoogle Scholar
  23. 23.
    Tschmelak J, Kappel N, Gauglitz G (2005) TIRF-based biosensor for sensitive detection of progesterone in milk based on ultra-sensitive progesterone detection in water. Anal Bioanal Chem 382(8):1895–1903CrossRefGoogle Scholar
  24. 24.
    Garcia-Reyero N, Grau E, Castillo M, Lopez de Alda MJ, Barcelo D, Pina B (2001) Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay. Environ Toxicol Chem 20(6):1152–1158CrossRefGoogle Scholar
  25. 25.
    Kaiser C, Uhlig S, Gerlach T, Korner M, Simon K, Kunath K, Florschutz K, Baronian K, Kunze G (2010) Evaluation and validation of a novel Arxula adeninivorans estrogen screen (nAES) assay and its application in analysis of wastewater, seawater, brackish water and urine. Sci Total Environ 408(23):6017–6026CrossRefGoogle Scholar
  26. 26.
    Beck V, Reiter E, Jungbauer A (2008) Androgen receptor transactivation assay using green fluorescent protein as a reporter. Anal Biochem 373(2):263–271CrossRefGoogle Scholar
  27. 27.
    Bovee TF, Helsdingen RJ, Hamers AR, van Duursen MB, Nielen MW, Hoogenboom RL (2007) A new highly specific and robust yeast androgen bioassay for the detection of agonists and antagonists. Anal Bioanal Chem 389(5):1549–1558CrossRefGoogle Scholar
  28. 28.
    Gerlach T, Knaust J, Kaiser C, Korner M, Hettwer K, Uhlig S, Simon K, Baronian K, Kunze G (2014) Development and assessment of a novel Arxula adeninivorans androgen screen (A-YAS) assay and its application in analysis of cattle urine. Sci Total Environ 490:1073–1081CrossRefGoogle Scholar
  29. 29.
    Chatterjee S, Kumar V, Majumder CB, Roy P (2008) Screening of some anti-progestin endocrine disruptors using a recombinant yeast based in vitro bioassay. Toxicol In Vitro 22(3):788–798CrossRefGoogle Scholar
  30. 30.
    Death AK, McGrath KC, Kazlauskas R, Handelsman DJ (2004) Tetrahydrogestrinone is a potent androgen and progestin. J Clin Endocrinol Metab 89(5):2498–2500CrossRefGoogle Scholar
  31. 31.
    Klotz DM, Ladlie BL, Vonier PM, McLachlan JA, Arnold SF (1997) o,p'-DDT and its metabolites inhibit progesterone-dependent responses in yeast and human cells. Mol Cell Endocrinol 129(1):63–71CrossRefGoogle Scholar
  32. 32.
    Li J, Li N, Ma M, Giesy JP, Wang Z (2008) In vitro profiling of the endocrine disrupting potency of organochlorine pesticides. Toxicol Lett 183(1–3):65–71Google Scholar
  33. 33.
    Mak P, McDonnell DP, Weigel NL, Schrader WT, O'Malley BW (1989) Expression of functional chicken oviduct progesterone receptors in yeast (Saccharomyces cerevisiae). J Biol Chem 264(36):21613–21618Google Scholar
  34. 34.
    Molina-Molina JM, Hillenweck A, Jouanin I, Zalko D, Cravedi JP, Fernandez MF, Pillon A, Nicolas JC, Olea N, Balaguer P (2006) Steroid receptor profiling of vinclozolin and its primary metabolites. Toxicol Appl Pharmacol 216(1):44–54CrossRefGoogle Scholar
  35. 35.
    Viswanath G, Halder S, Divya G, Majumder CB, Roy P (2008) Detection of potential (anti)progestagenic endocrine disruptors using a recombinant human progesterone receptor binding and transactivation assay. Mol Cell Endocrinol 295(1–2):1–9CrossRefGoogle Scholar
  36. 36.
    Van der Linden SC, Heringa MB, Man HY, Sonneveld E, Puijker LM, Brouwer A, Van der Burg B (2008) Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays. Environ Sci Technol 42(15):5814–5820CrossRefGoogle Scholar
  37. 37.
    Pham HTM, Kunath K, Gehrmann L, Giersberg M, Tuerk J, Uhlig S, Hanke G, Simon K, Baronian K, Kunze G (2013) Application of modified Arxula adeninivorans yeast cells in an online biosensor for the detection of estrogenic compounds in wastewater samples. Sensors Actuators B Chem 185:628–637CrossRefGoogle Scholar
  38. 38.
    Steinborn G, Gellissen G, Kunze G (2007) A novel vector element providing multicopy vector integration in Arxula adeninivorans. FEMS Yeast Res 7(7):1197–1205CrossRefGoogle Scholar
  39. 39.
    Rose M, Winston F, Heiter P (1990) Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  40. 40.
    Tanaka AO, Nobuko; Fukui, Saburo (1967) Formation of vitamins and their functions in hydrocarbon fermentation. IV. Production of vitamin B6 by Candida albicans in a hydrocarbon medium J Ferment Technol (45):617–623Google Scholar
  41. 41.
    Rosel H, Kunze G (1998) Integrative transformation of the dimorphic yeast Arxula adeninivorans LS3 based on hygromycin B resistance. Curr Genet 33(2):157–163CrossRefGoogle Scholar
  42. 42.
    Sajidan A, Farouk A, Greiner R, Jungblut P, Muller EC, Borriss R (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65(1):110–118CrossRefGoogle Scholar
  43. 43.
    Hahn T, Tag K, Riedel K, Uhlig S, Baronian K, Gellissen G, Kunze G (2006) A novel estrogen sensor based on recombinant Arxula adeninivorans cells. Biosens Bioelectron 21(11):2078–2085CrossRefGoogle Scholar
  44. 44.
    Wall MA, Socolich M, Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol 7(12):1133–1138CrossRefGoogle Scholar
  45. 45.
    Boer E, Piontek M, Kunze G (2009) Xplor 2—an optimized transformation/expression system for recombinant protein production in the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 84(3):583–594CrossRefGoogle Scholar
  46. 46.
    Klabunde J, Kunze G, Gellissen G, Hollenberg CP (2003) Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element. FEMS Yeast Res 4(2):185–193CrossRefGoogle Scholar
  47. 47.
    Wartmann T, Boer E, Pico AH, Sieber H, Bartelsen O, Gellissen G, Kunze G (2002) High-level production and secretion of recombinant proteins by the dimorphic yeast Arxula adeninivorans. FEMS Yeast Res 2(3):363–369Google Scholar
  48. 48.
    Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40 (Suppl. iv–vii)Google Scholar
  49. 49.
    Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantification. Clin Biochem Rev 29:49–52Google Scholar
  50. 50.
    Charles GD (2004) In vitro models in endocrine disruptor screening. ILAR J 45(4):494–501CrossRefGoogle Scholar
  51. 51.
    Vonier PM, Crain DA, McLachlan JA, Guillette LJ Jr, Arnold SF (1996) Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect 104(12):1318–1322CrossRefGoogle Scholar
  52. 52.
    Sonneveld E, Pieterse B, Schoonen WG, van der Burg B (2011) Validation of in vitro screening models for progestagenic activities: inter-assay comparison and correlation with in vivo activity in rabbits. Toxicol In Vitro 25(2):545–554CrossRefGoogle Scholar
  53. 53.
    Verkhusha VV, Akovbian NA, Efremenko EN, Varfolomeyev SD, Vrzheshch PV (2001) Kinetic analysis of maturation and denaturation of DsRed, a coral-derived red fluorescent protein. Biochemistry (Mosc) 66(12):1342–1351CrossRefGoogle Scholar
  54. 54.
    Negro CL, Castiglioni M, Senkman LE, Loteste A, Collins P (2013) Cost of reproduction. Changes in metabolism and endosulfan lethality caused by reproductive behavior in Hyalella curvispina (Crustacea: Amphipoda). Ecotoxicol Environ Saf 90:121–127CrossRefGoogle Scholar
  55. 55.
    Seki M, Yokota H, Maeda M, Tadokoro H, Kobayashi K (2003) Effects of 4-nonylphenol and 4-tert-octylphenol on sex differentiation and vitellogenin induction in medaka (Oryzias latipes). Environ Toxicol Chem 22(7):1507–1516CrossRefGoogle Scholar
  56. 56.
    Spitz IM (2003) Progesterone antagonists and progesterone receptor modulators: an overview. Steroids 68(10–13):981–993CrossRefGoogle Scholar
  57. 57.
    Orlando EF, Ellestad LE (2014) Sources, concentrations, and exposure effects of environmental gestagens on fish and other aquatic wildlife, with an emphasis on reproduction. Gen Comp Endocrinol 203:241–249CrossRefGoogle Scholar
  58. 58.
    Bain PA, Williams M, Kumar A (2014) Assessment of multiple hormonal activities in wastewater at different stages of treatment. Environ Toxicol Chem 33(10):2297–2307CrossRefGoogle Scholar
  59. 59.
    Liu SS, Ying GG, Liu YS, Yang YY, He LY, Chen J, Liu WR, Zhao JL (2015) Occurrence and removal of progestagens in two representative swine farms: effectiveness of lagoon and digester treatment. Water Res 77:146–154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexandre Chamas
    • 1
  • Annabel Nieter
    • 1
  • Ha Thi Minh Pham
    • 1
    • 2
  • Martin Giersberg
    • 1
  • Karina Hettwer
    • 3
  • Steffen Uhlig
    • 3
  • Kirsten Simon
    • 4
  • Keith Baronian
    • 5
  • Gotthard Kunze
    • 1
    Email author
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Institute of BiotechnologyVietnam Academy of Science and TechnologyCau GiayVietnam
  3. 3.QuoData GmbHDresdenGermany
  4. 4.New diagnostics GmbHFreisingGermany
  5. 5.School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations