Analytical and Bioanalytical Chemistry

, Volume 407, Issue 26, pp 8067–8077 | Cite as

Optical investigation of osteoarthritic human cartilage (ICRS grade) by confocal Raman spectroscopy: a pilot study

  • Rajesh Kumar
  • Kirsten M. Grønhaug
  • Nils K. Afseth
  • Vidar Isaksen
  • Catharina de Lange Davies
  • Jon O. Drogset
  • Magnus B. Lilledahl
Research Paper


Biomolecular changes in the cartilage matrix during the early stage of osteoarthritis may be detected by Raman spectroscopy. The objective of this investigation was to determine vibrational spectral differences among different grades (grades I, II, and III) of osteoarthritis in human osteoarthritic cartilage, which was classified according to the International Cartilage Repair Society (ICRS) grading system. Degenerative articular cartilage samples were collected during total joint replacement surgery and were classified according to the ICRS grading system for osteoarthritis. Twelve cartilage sections (4 sections of each ICRS grades I, II, and III) were selected for Raman spectroscopic analysis. Safranin-O/Fast green was used for histological staining and assignment of the Osteoarthritis Research Society International (OARSI) grade. Multivariate principal component analysis (PCA) was used for data analysis. Spectral analysis indicates that the content of disordered coil collagen increases significantly during the early progression of osteoarthritis. However, the increase was not statistically significant during later stages of the disease. A decrease in the content of proteoglycan was observed only during advanced stages of osteoarthritis. Our investigation shows that Raman spectroscopy can classify the different stage of osteoarthritic cartilage and can provide details on biochemical changes. This proof-of-concept study encourages further investigation of fresh cartilage on a larger population using fiber-based miniaturized Raman probe for the development of in vivo Raman arthroscopy as a potential diagnostic tool for osteoarthritis.


Raman spectroscopy Osteoarthritis Cartilage Collagen Biomedical optical analysis 



We are pleased to acknowledge Kristin G. Sæterbø, Astrid Bjørkøy, and Ulrike Böcker (Nofima) for their assistance in the laboratory. The histological analysis was performed at the Cellular and Molecular Imaging Core Facility (CMIC), Norwegian University of Science and Technology (NTNU). The partial funding to carry out this study was received from the joint committee of Helse Midt-Norge (HMN)-NTNU, Norway.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2015_8979_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1140 kb)


  1. 1.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502CrossRefGoogle Scholar
  2. 2.
    Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N, Rosendaal FR, Nelissen RG, Carter WO, Hellio Le Graverand MP, Kloppenburg M (2006) Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 239:811–817CrossRefGoogle Scholar
  3. 3.
    Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, Carballido-Gamio J, Ries M, Majumdar S (2007) In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartil / OARS, Osteoarthr Res Soc 15:789–797CrossRefGoogle Scholar
  4. 4.
    Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Labonte F, Beaudoin G, de Guise JA, Bloch DA, Choquette D, Haraoui B, Altman RD, Hochberg MC, Meyer JM, Cline GA, Pelletier JP (2004) Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheum 50:476–487CrossRefGoogle Scholar
  5. 5.
    Bruyere O, Genant H, Kothari M, Zaim S, White D, Peterfy C, Burlet N, Richy F, Ethgen D, Montague T, Dabrowski C, Reginster JY (2007) Longitudinal study of magnetic resonance imaging and standard X-rays to assess disease progression in osteoarthritis. Osteoarthritis Cartil / OARS, Osteoarthr Res Soc 15:98–103CrossRefGoogle Scholar
  6. 6.
    Cicuttini F, Hankin J, Jones G, Wluka A (2005) Comparison of conventional standing knee radiographs and magnetic resonance imaging in assessing progression of tibiofemoral joint osteoarthritis. Osteoarthritis Cartil / OARS, Osteoarthr Res Soc 13:722–727CrossRefGoogle Scholar
  7. 7.
    Morris MD, Roessler BJ (2006) Future spectroscopic diagnostics in osteoarthritis. Fut Rheumatol 1:383–386CrossRefGoogle Scholar
  8. 8.
    Bi X, Yang X, Bostrom MP, Camacho NP (2006) Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage. Biochim Biophys Acta 1758(7):934–941CrossRefGoogle Scholar
  9. 9.
    Boskey A, Pleshko Camacho N (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478CrossRefGoogle Scholar
  10. 10.
    West PA, Bostrom MP, Torzilli PA, Camacho NP (2004) Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study. Appl Spectrosc 58:376–381CrossRefGoogle Scholar
  11. 11.
    Dehring KA, Crane NJ, Smukler AR, McHugh JB, Roessler BJ, Morris MD (2006) Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy. Appl Spectrosc 60:1134–1141CrossRefGoogle Scholar
  12. 12.
    Argyri AA, Jarvis RM, Wedge D, Xu Y, Panagou EZ, Goodacre R, Nychas G-JE (2013) A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Control 29:461–470CrossRefGoogle Scholar
  13. 13.
    Kumar R, Singh G, Grønhaug K, Afseth N, de Lange DC, Drogset J, Lilledahl M (2015) single cell confocal Raman spectroscopy of human osteoarthritic chondrocytes: a preliminary study. Int J Mol Sci 16:9341–9353CrossRefGoogle Scholar
  14. 14.
    Nyman JS, Makowski AJ, Patil CA, Masui TP, O'Quinn EC, Bi X, Guelcher SA, Nicollela DP, Mahadevan-Jansen A (2011) Measuring differences in compositional properties of bone tissue by confocal Raman spectroscopy. Calcif Tissue Int 89:111–122CrossRefGoogle Scholar
  15. 15.
    Kerns JG, Gikas PD, Buckley K, Birch HL, McCarthy ID, Miles J, Briggs TWR, Parker AW, Matousek P, Goodship AE (2013) Raman spectroscopy reveals evidence for early bone changes in osteoarthrits. Bone Joint J Orthop Proc Suppl 95-B:45Google Scholar
  16. 16.
    Khan AF, Awais M, Khan AS, Tabassum S, Chaudhry AA, Rehman IU (2013) Raman spectroscopy of natural bone and synthetic apatites. Appl Spectrosc Rev 48:329–355CrossRefGoogle Scholar
  17. 17.
    Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5:259–268CrossRefGoogle Scholar
  18. 18.
    Buchwald T, Niciejewski K, Kozielski M, Szybowicz M, Siatkowski M, Krauss H (2012) Identifying compositional and structural changes in spongy and subchondral bone from the hip joints of patients with osteoarthritis using Raman spectroscopy. J Biomed Opt 17:017007CrossRefGoogle Scholar
  19. 19.
    Bohic S, Rey C, Legrand A, Sfihi H, Rohanizadeh R, Martel C, Barbier A, Daculsi G (2000) Characterization of the trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bone 26:341–348CrossRefGoogle Scholar
  20. 20.
    Notingher I, Jell G, Notingher P, Bisson I, Polak J, Hench L (2005) Raman spectroscopy: potential tool for in situ characterization of bone cell differentiation. Bioceramics 17:545–548Google Scholar
  21. 21.
    Boskey AL, Garip S (2012) Diagnosis of bone and cartilage diseases. In: Severcan F, Haris PI (eds) Vibrational Spectroscopy in Diagnosis and Screening, chap. 11. IOS Press: pp 272–303Google Scholar
  22. 22.
    Bonifacio A, Beleites C, Vittur F, Marsich E, Semeraro S, Paoletti S, Sergo V (2010) Chemical imaging of articular cartilage sections with Raman mapping, employing uni- and multi-variate methods for data analysis. Analyst 135:3193–3204CrossRefGoogle Scholar
  23. 23.
    Karen AE (2009) R aman spectroscopy detection of molecular changes associated with osteoarthritis. PhD Thesis, University of MichiganGoogle Scholar
  24. 24.
    Kontoyannis C, Vardaki M, Megas P, Panteliou S, Orkoula M, Papachristou D (2011) Raman spectroscopy of articular cartilage and subchondral bone on osteoarthritic human femoral heads. School of Pharmacy (Publ IP Conference), University of PatrasGoogle Scholar
  25. 25.
    Lim NS, Hamed Z, Yeow CH, Chan C, Huang Z (2011) Early detection of biomolecular changes in disrupted porcine cartilage using polarized Raman spectroscopy. J Biomed Opt 16(1):017003CrossRefGoogle Scholar
  26. 26.
    Pudlas M, Brauchle E, Klein TJ, Hutmacher DW, Schenke-Layland K (2013) Non-invasive identification of proteoglycans and chondrocyte differentiation state by Raman microspectroscopy. J Biophotonics 6:205–211CrossRefGoogle Scholar
  27. 27.
    Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br Vol 43-b:752–757Google Scholar
  28. 28.
    Kleemann RU, Krocker D, Cedraro A, Tuischer J, Duda GN (2005) Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade). Osteoarthritis Cartil / OARS, Osteoarthr Res Soc 13:958–963CrossRefGoogle Scholar
  29. 29.
    Brittberg M et al., ICRS Cartilage Injury Evaluation Package. Proceedings of 3rd ICRS meeting, Göteborg, Sweden., 2000. Available online:
  30. 30.
    Hoetker MS, Goetz M (2013) Molecular imaging in endoscopy. U Eur Gastroenterol J 1:84–92CrossRefGoogle Scholar
  31. 31.
    Popp J, Schmitt M (2013) The Many facets of Raman Spectroscopy in Biophotonics. In: Optics in the Life Sciences, Waikoloa Beach, Hawaii. OSA Technical Digest (online). Optical Society of America, p MT1C.1Google Scholar
  32. 32.
    Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S, Stauffer E (2003) Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am Vol 85-A(Suppl 2):45–57Google Scholar
  33. 33.
    Severcan F, Haris PI (2012) Vibrational Spectroscopy in Diagnosis and Screening. Advances in Biomedical Spectroscopy, Vol 6. IOS PressGoogle Scholar
  34. 34.
    Salzer R, Siesler HW (2009) Infrared and Raman Spectroscopic Imaging. eds.,Wiley-VCH, Weinheim, GermanyGoogle Scholar
  35. 35.
    Meade A, Clarke C, Draux F, Sockalingum G, Manfait M, Lyng F, Byrne H (2010) Studies of chemical fixation effects in human cell lines using Raman microspectroscopy. Anal Bioanal Chem 396:1781–1791CrossRefGoogle Scholar
  36. 36.
    Kunstar A (2012) Confocal Raman microspectroscopy: application in cartilage tissue engineering. PhD Thesis., University of Twente, Enschede, The NetherlandsGoogle Scholar
  37. 37.
    Huang Z, McWilliams A, Lam S, English J, McLean DI, Lui H, Zeng H (2003) Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues. Int J Oncol 23:649–655Google Scholar
  38. 38.
    Dubessy J, Rull F, Sharma S (2012) Instrumentation in Raman spectroscopy; elementary theory and practice (in Applications of Raman spectroscopy to earth sciences and cultural heritage). Eur Mineral Union Notes Mineral 12:83–172Google Scholar
  39. 39.
    Esmonde-White FWL, Schulmerich MV, Esmonde-White KA, Morris MD (2009) Automated Raman spectral preprocessing of bone and other musculoskeletal tissues. Proc. SPIE: 716605–716610Google Scholar
  40. 40.
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRefGoogle Scholar
  41. 41.
    Barman I, Singh GP, Dasari RR, Feld MS (2009) Turbidity-corrected raman spectroscopy for blood analyte detection. Anal Chem 81:4233–4240CrossRefGoogle Scholar
  42. 42.
    Zhao J, Lui H, McLean DI, Zeng H (2007) Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl Spectrosc 61:1225–1232CrossRefGoogle Scholar
  43. 43.
    Barman I, Kong CR, Singh GP, Dasari RR (2011) Effect of photobleaching on calibration model development in biological Raman spectroscopy. J Biomed Opt 16:011004CrossRefGoogle Scholar
  44. 44.
    Kumar R, Singh GP, Barman I, Dingari NC, Nabi G (2013) A facile and real-time spectroscopic method for biofluid analysis in point-of-care diagnostics. Bioanalysis 5:1853–1861CrossRefGoogle Scholar
  45. 45.
    Bugay DE (2001) Characterization of the solid-state: spectroscopic techniques. Adv Drug Deliv Rev 48:43–65CrossRefGoogle Scholar
  46. 46.
    McCreery RL (2000) Raman spectroscopy for chemical analysis. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  47. 47.
    Rösch P, Harz M, Schmitt M, Popp J (2005) Raman spectroscopic identification of single yeast cells. J Raman Spectrosc 36:377–379CrossRefGoogle Scholar
  48. 48.
    Myakalwar AK, Sreedhar S, Barman I, Dingari NC, Venugopal Rao S, Prem Kiran P, Tewari SP, Manoj Kumar G (2011) Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis. Talanta 87:53–59CrossRefGoogle Scholar
  49. 49.
    Smith E, Dent G (2005) Modern Raman spectroscopy: a practical approach. Wiley.Google Scholar
  50. 50.
    Stone N, Kendall C, Smith J, Crow P, Barr H (2004) Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 126:141–157, discussion 169–183 CrossRefGoogle Scholar
  51. 51.
    Stone N, Stavroulaki P, Kendall C, Birchall M, Barr H (2000) Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope 110:1756–1763CrossRefGoogle Scholar
  52. 52.
    Barman I, Dingari NC, Singh GP, Kumar R, Lang S, Nabi G (2012) Selective sampling using confocal Raman spectroscopy provides enhanced specificity for urinary bladder cancer diagnosis. Anal Bioanal Chem 404:3091–3099CrossRefGoogle Scholar
  53. 53.
    Rosenberg L (1971) Chemical basis for the histological use of safranin O in the study of articular cartilage. J Bone Joint Surg Am Vol 53:69–82Google Scholar
  54. 54.
    Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartil / OARS, Osteoarthr Res Soc 14:13–29CrossRefGoogle Scholar
  55. 55.
    Dehring KA, Smukler AR, Roessler BJ, Morris MD (2006) Correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy. Appl Spectrosc 60:366–372CrossRefGoogle Scholar
  56. 56.
    Takahashi Y, Sugano N, Takao M, Sakai T, Nishii T, Pezzotti G (2014) Raman spectroscopy investigation of load-assisted microstructural alterations in human knee cartilage: preliminary study into diagnostic potential for osteoarthritis. J Mech Behav Biomed Mater 31:77–85CrossRefGoogle Scholar
  57. 57.
    Bonifacio A, Sergo V (2010) Effects of sample orientation in Raman microspectroscopy of collagen fibers and their impact on the interpretation of the amide III band. Vib Spectrosc 53:314–317CrossRefGoogle Scholar
  58. 58.
    Lednev IK, Karnoup AS, Sparrow MC, Asher SA (1999) Nanosecond UV resonance Raman examination of initial steps in α-helix secondary structure evolution. In: Puppels GJ, Otto C (eds) Greve J. Spectroscopy of Biological Molecules, New Directions. Springer Netherlands, pp 11–12Google Scholar
  59. 59.
    Abdi H (2007) The eigen-decomposition: eigenvalues and eigenvectors. Salkind NJ (Ed.), Encyclopedia of Measurement and Statistics. Sage PublicationsGoogle Scholar
  60. 60.
    Mobili P, Londero P, De Antoni G, Gomez-Zavaglia A (2010) Multivariate analysis of Raman spectra applied to microbiology: discrimination of microorganisms at the species level. Revista Mexicana De Fisica 56:378–385Google Scholar
  61. 61.
    Sahu A, Dalal K, Naglot S, Aggarwal P, Murali Krishna C (2013) Serum based diagnosis of asthma using Raman spectroscopy: an early phase pilot study. PLoS One 8Google Scholar
  62. 62.
    Knudson CB, Knudson W (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12(2):69–78CrossRefGoogle Scholar
  63. 63.
    Fischer WB, Eysel HH (1992) Polarized Raman spectra and intensities of aromatic amino acids phenylalanine, tyrosine and tryptophan. Spectrochim Acta A: Mol Spectrosc 48(5):725–732CrossRefGoogle Scholar
  64. 64.
    Rizkalla G, Reiner A, Bogoch E, Poole AR (1992) Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. J Clin Invest 90(6):2268–2277CrossRefGoogle Scholar
  65. 65.
    Thompson RC Jr, Oegema TR Jr (1979) Metabolic activity of articular cartilage in osteoarthritis. An in vitro study. J Bone Joint Surg Am Vol 61(3):407–416Google Scholar
  66. 66.
    Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am Vol 53(3):523–537Google Scholar
  67. 67.
    Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213:34–40Google Scholar
  68. 68.
    Burr DB (2004) Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartil, Osteoarthr Res Soc 12(Suppl A):S20–30CrossRefGoogle Scholar
  69. 69.
    Buck RJ, Wirth W, Dreher D, Nevitt M, Eckstein F (2013) Frequency and spatial distribution of cartilage thickness change in knee osteoarthritis and its relation to clinical and radiographic covariates - data from the osteoarthritis initiative. Osteoarthritis Cartil, Osteoarthr Res Soc 21(1):102–109CrossRefGoogle Scholar
  70. 70.
    Esmonde-White KA, Esmonde-White FW, Morris MD, Roessler BJ (2011) Fiber-optic Raman spectroscopy of joint tissues. Analyst 136(8):1675–1685CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rajesh Kumar
    • 1
  • Kirsten M. Grønhaug
    • 2
  • Nils K. Afseth
    • 3
  • Vidar Isaksen
    • 4
  • Catharina de Lange Davies
    • 1
  • Jon O. Drogset
    • 5
  • Magnus B. Lilledahl
    • 1
  1. 1.Department of PhysicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Orthopaedic DepartmentLevanger HospitalLevangerNorway
  3. 3.ÅsNorway
  4. 4.Department of Medical BiologyThe Arctic University of Norway (UiT)TromsøNorway
  5. 5.Department of Orthopaedic SurgeryTrondheim University HospitalTrondheimNorway

Personalised recommendations