Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 26, pp 7973–7981 | Cite as

Time-resolved spectroscopy of a homogeneous dielectric barrier discharge for soft ionization driven by square wave high voltage

  • Vlasta HorvaticEmail author
  • Antje Michels
  • Norman Ahlmann
  • Günter Jestel
  • Damir Veza
  • Cedomil Vadla
  • Joachim Franzke
Research Paper

Abstract

Helium capillary dielectric barrier discharge driven by the square wave-shaped high voltage was investigated spatially and temporally by means of optical emission spectroscopy. The finding of the previous investigation conducted with the sinusoidal-like high voltage was confirmed, i.e., the plasma in the jet and the plasma in the capillary constitute two temporally separated events. The plasma in the jet occurs prior to the discharge in the capillary and exists only during the positive half period of the applied high voltage. The time delay of the capillary discharge with respect to the discharge in the jet depended on the high voltage, and it was between 2.4 and 8.4 μs for the voltage amplitude change in the range from 1.96 to 2.31 kV, respectively. It was found that, compared to sinusoidal-like voltage, application of the square wave high voltage results with stronger (~6 times) He line emission in the jet, which makes the latter more favorable for efficient soft ionization. The use of the square wave high voltage enabled comparison of the currents (~1 mA) flowing in the capillary during the positive and negative high voltage periods, which yielded the estimation for the charge dissipated in the atmosphere ((4 ± 20 %) × 10−11 C) through the plasma jet.

Keywords

Dielectric barrier discharge ionization Soft ionization Time-resolved emission spectroscopy 

Notes

Acknowledgments

The financial support by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, the Bundesministerium für Bildung und Forschung, the Deutsche Forschungsgemeinschaft (project no. FR 1192/13-1) is gratefully acknowledged. This work has been supported in part by the Croatian Science Foundation under the project no. 2753.

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Na NM, Zhao X, Zhang SC, Yang CD, Zhang XR (2007) Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom 18(10):1859–1862CrossRefGoogle Scholar
  2. 2.
    Zhu Z, Liu J, Zhang S, Na X, Zhang X (2008) Determination of Se, Pb, and Sb by atomic fluorescence spectrometry using a new flameless, dielectric barrier discharge atomizer. Spectrochim Acta B At Spectrosc 63(3):431–436CrossRefGoogle Scholar
  3. 3.
    Yu Y, Du Z, Chen M, Wang J (2008) Atmospheric-pressure dielectric-barrier discharge as a radiation source for optical emission spectrometry. Angew Chem Int Ed 47(41):7909–7912CrossRefGoogle Scholar
  4. 4.
    Gras R, Luong J, Monagle M, Winniford B (2006) Gas chromatographic applications with the dielectric barrier discharge detector. J Chromatogr Sci 44(2):101–107CrossRefGoogle Scholar
  5. 5.
    He Y, Lv Y, Li Y, Tang H, Li L, Wu X, Hou X (2007) Dielectric barrier discharge-induced chemiluminescence: potential application as GC detector. Anal Chem 79(12):4674–4680CrossRefGoogle Scholar
  6. 6.
    Almasian MR, Na N, Wen F, Zhang S, Zhang X (2010) Development of a plasma-assisted cataluminescence system for benzene, toluene, ethylbenzene, and xylenes analysis. Anal Chem 82(9):3457–3459CrossRefGoogle Scholar
  7. 7.
    Jafari MT (2011) Low-temperature plasma ionization ion mobility spectrometry. Anal Chem 83(3):797–803CrossRefGoogle Scholar
  8. 8.
    Guo C, Tang F, Chen J, Wang X, Zhang S, Zhang X (2015) Development of dielectric-barrier-discharge ionization. Anal Bioanal Chem 407(9):2345–2364CrossRefGoogle Scholar
  9. 9.
    Hu J, Li W, Zheng C, Hou X (2011) Dielectric barrier discharge in analytical spectrometry. Appl Spectrosc Rev 46(5):368–387CrossRefGoogle Scholar
  10. 10.
    Meyer C, Müller S, Gurevich EL, Franzke J (2011) Dielectric barrier discharges in analytical chemistry. Analyst 136(12):2427–2440CrossRefGoogle Scholar
  11. 11.
    Bárdos L, Baránková H (2010) Cold atmospheric plasma: sources, processes, and applications. Thin Solid Films 518(23):6705–6713CrossRefGoogle Scholar
  12. 12.
    Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B 61(1):2–30CrossRefGoogle Scholar
  13. 13.
    Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23(1):1–46CrossRefGoogle Scholar
  14. 14.
    Jiang N, Ji A, Cao Z (2009) Atmospheric pressure plasma jet: effect of electrode configuration, discharge behavior, and its formation mechanism. J Appl Phys 106(1):013308CrossRefGoogle Scholar
  15. 15.
    Urabe K, Morita T, Tachibana K, Ganguly BN (2010) Investigation of discharge mechanisms in helium plasma jet at atmospheric pressure by laser spectroscopic measurements. J Phys D Appl Phys 43(9):095201CrossRefGoogle Scholar
  16. 16.
    Sands BL, Leiweke RJ, Ganguly BN (2010) Spatiotemporally resolved Ar (1s5) metastable measurements in a streamer-like He/Ar atmospheric pressure plasma jet. J Phys D Appl Phys 43(28):282001CrossRefGoogle Scholar
  17. 17.
    Boeuf J-P, Yang LL, Pitchford LC (2013) Dynamics of a guided streamer (‘plasma bullet’) in a helium jet in air at atmospheric pressure. J Phys D Appl Phys 46(1):015201CrossRefGoogle Scholar
  18. 18.
    Karakas E, Akman MA, Laroussi M (2012) The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements. Plasma Sources Sci Technol 21(3):034016CrossRefGoogle Scholar
  19. 19.
    Sands BL, Ganguly BN, Tachibana K (2008) A streamer-like atmospheric pressure plasma jet. Appl Phys Lett 92(15):151503CrossRefGoogle Scholar
  20. 20.
    Sands BL, Huang SK, Speltz JW, Niekamp MA, Ganguly BN (2013) Role of Penning ionization in the enhancement of streamer channel conductivity and Ar(1s5) production in a He-Ar plasma jet. J Appl Phys 113(15):153303CrossRefGoogle Scholar
  21. 21.
    Lu X, Laroussi M (2006) Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses. J Appl Phys 100(6):063302CrossRefGoogle Scholar
  22. 22.
    Horvatic V, Michels A, Ahlmann N, Jestel G, Veza D, Vadla C, Franzke J (2015) Time- and spatially resolved emission spectroscopy of the dielectric barrier discharge for soft ionization sustained by a quasi-sinusoidal high voltage. J Anal Bioanal Chem. doi: 10.1007/s00216-015-8827-7 Google Scholar
  23. 23.
    Müller S, Krähling T, Veza D, Horvatic V, Vadla C, Franzke J (2013) Operation modes of the helium dielectric barrier discharge for soft ionization. Spectrochim Acta B 85:104–111CrossRefGoogle Scholar
  24. 24.
    Meyer C, Müller S, Gilbert-López B, Franzke J (2013) Impact of homogeneous and filamentary discharge modes on the efficiency of dielectric barrier discharge ionization mass spectrometry. Anal Bioanal Chem 405(14):4729–4735CrossRefGoogle Scholar
  25. 25.
    Horvatic V, Vadla C, Franzke J (2014) Discussion of fundamental processes in dielectric barrier discharges used for soft ionization. Spectrochim Acta B 100:52–61CrossRefGoogle Scholar
  26. 26.
    Urabe K, Ito Y, Osamu Sakai O, Tachibana K (2010) Interaction between dielectric barrier discharge and positive streamer in helium plasma jet at atmospheric pressure. Jpn J Appl Phys 49(10R):106001CrossRefGoogle Scholar
  27. 27.
    Chan GC-Y, Shelley JT, Wiley JS, Engelhard C, Jackson AU, Cooks RG, Hieftje GM (2011) Elucidation of reaction mechanisms responsible for afterglow and reagent-ion formation in the low-temperature plasma probe ambient ionization source. Anal Chem 83(10):3675–3686CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vlasta Horvatic
    • 1
    Email author
  • Antje Michels
    • 2
  • Norman Ahlmann
    • 2
  • Günter Jestel
    • 2
  • Damir Veza
    • 3
  • Cedomil Vadla
    • 1
  • Joachim Franzke
    • 2
  1. 1.Institute of PhysicsZagrebCroatia
  2. 2.ISAS—Leibniz Institut für analytische WissenschaftenDortmundGermany
  3. 3.Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations