Analytical and Bioanalytical Chemistry

, Volume 407, Issue 25, pp 7757–7763 | Cite as

Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC

  • Dušan Materić
  • Matteo Lanza
  • Philipp Sulzer
  • Jens Herbig
  • Dan Bruhn
  • Claire Turner
  • Nigel Mason
  • Vincent Gauci
Research Paper

Abstract

Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection <1 pptv and the response times of approximately 100 ms), the selectivity of PTR-MS is still somewhat limited, as isomers cannot be separated. Recently, selectivity-enhancing measures, such as manipulation of drift tube parameters (reduced electric field strength) and using primary ions other than H3O+, such as NO+ and O2+, have been introduced. However, monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research—PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.

Keywords

PTR-MS FastGC Monoterpenes VOC Plant VOCs Pinene 

References

  1. 1.
    Bäck J, Aalto J, Henriksson M et al (2012) Chemodiversity of a Scots pine stand and implications for terpene air concentrations. Biogeosciences 9:689–702. doi:10.5194/bg-9-689-2012 CrossRefGoogle Scholar
  2. 2.
    Janson RW (1993) Monoterpene emissions from Scots pine and Norwegian spruce. J Geophys Res Atmos 98:2839–2850. doi:10.1029/92JD02394 CrossRefGoogle Scholar
  3. 3.
    Räisänen T, Ryyppö A, Kellomäki S (2009) Monoterpene emission of a boreal Scots pine (Pinus sylvestris L.) forest. Agric For Meteorol 149:808–819. doi:10.1016/j.agrformet.2008.11.001 CrossRefGoogle Scholar
  4. 4.
    Ehn M, Thornton JA, Kleist E et al (2014) A large source of low-volatility secondary organic aerosol. Nature 506:476–479. doi:10.1038/nature13032 CrossRefGoogle Scholar
  5. 5.
    Ellis AM, Mayhew CA (2014) Proton transfer reaction mass spectrometry: principles and applications, 1st edn. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  6. 6.
    Tani A, Hayward S, Hewitt CN (2003) Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). Int J Mass Spectrom 223–224:561–578. doi:10.1016/S1387-3806(02)00880-1 CrossRefGoogle Scholar
  7. 7.
    Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109:861–896CrossRefGoogle Scholar
  8. 8.
    Smith D, Španěl P (2005) Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom Rev 24:661–700. doi:10.1002/mas.20033 CrossRefGoogle Scholar
  9. 9.
    Wang T, Španěl P, Smith D (2003) Selected ion flow tube, SIFT, studies of the reactions of H3O+, NO+ and O2+ with eleven C10H16 monoterpenes. Int J Mass Spectrom 228:117–126. doi:10.1016/S1387-3806(03)00271-9 CrossRefGoogle Scholar
  10. 10.
    Sulzer P, Hartungen E, Hanel G et al (2014) A proton transfer reaction-quadrupole interface time-of-flight mass spectrometer (PTR-QiTOF): high speed due to extreme sensitivity. Int J Mass Spectrom 368:1–5. doi:10.1016/j.ijms.2014.05.004 CrossRefGoogle Scholar
  11. 11.
    Hansel A, Jordan A, Holzinger R et al (1995) Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int J Mass Spectrom Ion Process 149–150:609–619. doi:10.1016/0168-1176(95)04294-U CrossRefGoogle Scholar
  12. 12.
    Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion Process 173:191–241. doi:10.1016/S0168-1176(97)00281-4 CrossRefGoogle Scholar
  13. 13.
    Misztal PK, Heal MR, Nemitz E, Cape JN (2012) Development of PTR-MS selectivity for structural isomers: monoterpenes as a case study. Int J Mass Spectrom 310:10–19. doi:10.1016/j.ijms.2011.11.001 CrossRefGoogle Scholar
  14. 14.
    Jordan A, Haidacher S, Hanel G et al (2009) An online ultra-high sensitivity proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR + SRI − MS). Int J Mass Spectrom 286:32–38. doi:10.1016/j.ijms.2009.06.006 CrossRefGoogle Scholar
  15. 15.
    Lanza M, Acton WJ, Jürschik S et al (2013) Distinguishing two isomeric mephedrone substitutes with selective reagent ionisation mass spectrometry (SRI-MS). J Mass Spectrom 48:1015–1018. doi:10.1002/jms.3253 CrossRefGoogle Scholar
  16. 16.
    Ruuskanen TM, Kolari P, Bäck J et al (2005) On-line field measurements of monoterpene emissions from Scots pine by proton-transfer-reaction mass spectrometry. Boreal Environ Res 10:553–567Google Scholar
  17. 17.
    Lindinger C, Pollien P, Ali S et al (2005) Unambiguous identification of volatile organic compounds by proton-transfer reaction mass spectrometry coupled with GC/MS. Anal Chem 77:4117–4124. doi:10.1021/ac0501240 CrossRefGoogle Scholar
  18. 18.
    Overton EB, Carney KR, Roques N, Dharmasena HP (2001) Fast GC instrumentation and analysis for field applications. Field Anal Chem Technol 5:97–105. doi:10.1002/fact.1010 CrossRefGoogle Scholar
  19. 19.
    Romano A, Fischer L, Herbig J et al (2014) Wine analysis by fastGC proton-transfer reaction-time-of-flight-mass spectrometry. Int J Mass Spectrom 369:81–86. doi:10.1016/j.ijms.2014.06.006 CrossRefGoogle Scholar
  20. 20.
    Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29:S49–S52Google Scholar
  21. 21.
    Materić D (2015) FastGCpeakCalc—a program for fastGC-PTR-ToF-MS data analysis. https://github.com/dusanac/FastGCpeakCalc. Accessed 2 Jun 2015
  22. 22.
    Fall R, Karl T, Hansel A et al (1999) Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res Atmos 104:15963–15974. doi:10.1029/1999JD900144 CrossRefGoogle Scholar
  23. 23.
    Brilli F, Ruuskanen TM, Schnitzhofer R et al (2011) Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction “time-of-flight” mass spectrometry (PTR-TOF). PLoS ONE 6:e20419. doi:10.1371/journal.pone.0020419 CrossRefGoogle Scholar
  24. 24.
    Colby BN (1992) Spectral deconvolution for overlapping GC/MS components. J Am Soc Mass Spectrom 3:558–562. doi:10.1016/1044-0305(92)85033-G CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dušan Materić
    • 1
  • Matteo Lanza
    • 2
  • Philipp Sulzer
    • 2
  • Jens Herbig
    • 2
  • Dan Bruhn
    • 1
  • Claire Turner
    • 3
  • Nigel Mason
    • 4
  • Vincent Gauci
    • 1
  1. 1.Department of Environment, Earth and EcosystemsThe Open UniversityMilton KeynesUK
  2. 2.IONICON AnalytikInnsbruckAustria
  3. 3.Department of Life, Health and Chemical SciencesThe Open UniversityMilton KeynesUK
  4. 4.Department of Physical SciencesThe Open UniversityMilton KeynesUK

Personalised recommendations