Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 22, pp 6689–6696 | Cite as

Time- and spatially resolved emission spectroscopy of the dielectric barrier discharge for soft ionization sustained by a quasi-sinusoidal high voltage

  • Vlasta HorvaticEmail author
  • Antje Michels
  • Norman Ahlmann
  • Günter Jestel
  • Damir Veza
  • Cedomil Vadla
  • Joachim Franzke
Research Paper

Abstract

A helium capillary dielectric barrier discharge was investigated by means of time-resolved optical emission spectroscopy with the aim of elucidating the process of the formation of the plasma jet. The helium emission line at 706 nm was utilized to monitor spatial and temporal propagation of the excitation of helium atoms. The discharge was sustained with quasi-sinusoidal high voltage, and the temporal evolution of the helium atomic emission was measured simultaneously with the discharge current. The spatial development of the plasma was investigated along the discharge axis in the whole region, which covers the positions in the capillary between the electrodes as well as the plasma jet outside the capillary. The high voltage electrode was placed 2 mm from the capillary orifice, and the distance between the ground and high voltage electrode was 10 mm. The complete spatiotemporal grid of the development of the helium excitation has shown that during the positive half-period of the applied voltage, two independent plasmas, separated in time, are formed. First, the early plasma that constitutes the plasma jet is formed, while the discharge in the capillary follows subsequently. In the early plasma, the helium atom excitation propagation starts in the vicinity of the high voltage electrode and departs from the capillary towards the ground electrode as well as several millimeters outside of the capillary in the form of the plasma jet. After relatively slow propagation of the early plasma in the capillary and the jet, the second plasma starts between the electrodes. During the negative voltage period, only the plasma in the capillary between the electrodes occurs.

Graphical Abstract

Spatiotemporal evolution of the helium excitation propagation in the He capillary DBD

Keywords

Dielectric-barrier-discharge ionization Soft ionization Time-resolved emission spectroscopy 

Notes

Acknowledgments

The financial support by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, the Bundesministerium für Bildung und Forschung, the Deutsche Forschungsgemeinschaft (project no. FR 1192/13-1) is gratefully acknowledged. This work has been supported in part by the Croatian Science Foundation under the project no. 2753.

References

  1. 1.
    Chan GCY, Shelley JT, Wiley JS, Engelhard C, Jackson AU, Cooks RG, Hieftje GM (2011) Elucidation of reaction mechanisms responsible for afterglow and reagent-ion formation in the low-temperature plasma probe ambient ionization source. Anal Chem 83(X):3675–3686CrossRefGoogle Scholar
  2. 2.
    Xiong Q, Lu X, Liu J, Xian Y, Xiong Z, Zou F, Zou C, Gong W, Hu J, Chen K, Pei X, Jiang Z, Pan Y (2009) Temporal and spatial resolved optical emission behaviors of a cold atmospheric pressure plasma jet. J Appl Phys 106(X):083302CrossRefGoogle Scholar
  3. 3.
    Urabe K, Ito Y, Tachibana K, Ganguly BN (2008) Behavior of N2 + Ions in He microplasma jet at atmospheric pressure measured by laser induced fluorescence spectroscopy. Appl Phys Express 1(6):066004CrossRefGoogle Scholar
  4. 4.
    Sands BL, Huang SK, Speltz JW, Niekamp MA, Schmidt JB, Ganguly BN (2012) Dynamic electric potential redistribution and its influence on the development of a dielectric barrier plasma jet. Plasma Sources Sci Technol 21(3):034009CrossRefGoogle Scholar
  5. 5.
    Lu X, Laroussi M, Puech V (2012) On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol 21(3):034005CrossRefGoogle Scholar
  6. 6.
    Michels A, Tombrink S, Vautz W, Miclea M, Franzke J (2007) Spectroscopic characterization of a microplasma used as ionization source for ion mobility spectrometry. Spectrochim Acta B 62(11):1208–1215CrossRefGoogle Scholar
  7. 7.
    Olenici-Craciunescu SB, Michels A, Meyer C, Heming R, Tombrink S, Vautz W, Franzke J (2009) Characterization of a capillary dielectric barrier plasma jet for use as a soft ionization source by optical emission and ion mobility spectrometry. Spectrochim Acta B 64(11–12):1253–1258CrossRefGoogle Scholar
  8. 8.
    Olenici-Craciunescu SB, Müller S, Michels A, Horvatic V, Vadla C, Franzke J (2011) Spatially resolved spectroscopic measurements of a dielectric barrier discharge plasma jet applicable for soft ionization. Spectrochim Acta B 66(3–4):268–273CrossRefGoogle Scholar
  9. 9.
    Müller S, Krähling T, Veza D, Horvatic V, Vadla C, Franzke J (2013) Operation modes of the helium dielectric barrier discharge for soft ionization. Spectrochim Acta B 85:104–111CrossRefGoogle Scholar
  10. 10.
    Horvatic V, Müller S, Veza D, Vadla C, Franzke J (2014) Atmospheric helium capillary dielectric barrier discharge for soft ionization: determination of atom number densities in the lowest excited and metastable states. Anal Chem 86(1):857–864CrossRefGoogle Scholar
  11. 11.
    Horvatic V, Müller S, Veza D, Vadla C, Franzke J (2014) Atmospheric helium capillary dielectric barrier discharge for soft ionization: broadening of spectral lines, gas temperature and electron number density. J Anal At Spectrom 29(3):498–505CrossRefGoogle Scholar
  12. 12.
    Na N, Zhao MX, Zhang SC, Yang CD, Zhang XR (2007) Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom 18(10):1859–1862CrossRefGoogle Scholar
  13. 13.
    Horvatic V, Vadla C, Franzke J (2014) Discussion of fundamental processes in dielectric barrier discharges used for soft ionization. Spectrochim Acta B 100:52–61CrossRefGoogle Scholar
  14. 14.
    Lu X, Laroussi M (2006) Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses. J Appl Phys 100(6):063302CrossRefGoogle Scholar
  15. 15.
    Laroussi M, Aken T (2007) Arc-free atmospheric pressure cold plasma jets: a review. Plasma Process Polym 4(9):777–788CrossRefGoogle Scholar
  16. 16.
    Naidis GV (2010) Modelling of streamer propagation in atmospheric-pressure helium plasma jets. J Phys D Appl Phys 43(20):402001CrossRefGoogle Scholar
  17. 17.
    Naidis GV (2011) Modelling of plasma bullet propagation along a helium jet in ambient air. J Phys D Appl Phys 44(21):215203CrossRefGoogle Scholar
  18. 18.
    Takashima K, Adamovich I, Xiong Z, Kushner M, Starikovskaia S, Czarnetzki U, Luggenholscher D (2011) Experimental and modeling analysis of fast ionization wave discharge propagation in a rectangular geometry. Phys Plasmas 18(8):083505CrossRefGoogle Scholar
  19. 19.
    Kim Y, Han G-H, Jin S, Choi E-H, Uhm HS, Cho G (2014) Measurement of optical signals as a plasma propagation in the atmospheric pressure plasma jet columns. Curr Appl Phys 14(12):1718–1726CrossRefGoogle Scholar
  20. 20.
    Mericam-Bourdet N, Laroussi M, Begum A, Karakas E (2009) Experimental investigations of plasma bullets. J Phys D Appl Phys 42(5):055207CrossRefGoogle Scholar
  21. 21.
    Jiang N, Ji A, Cao Z (2009) Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism. J Appl Phys 106(1):013308CrossRefGoogle Scholar
  22. 22.
    Karakas E, Koklu M, Laroussi M (2010) Correlation between helium mole fraction and plasma bullet propagation in low temperature plasma jets. J Phys D Appl Phys 43(15):155202CrossRefGoogle Scholar
  23. 23.
    Urabe K, Morita T, Tachibana K, Ganguly BN (2010) Investigation of discharge mechanisms in helium plasma jet at atmospheric pressure by laser spectroscopic measurements. J Phys D Appl Phys 43(9):095201CrossRefGoogle Scholar
  24. 24.
    Li Q, Zhu XM, Li JT, Pu YK (2010) Role of metastable atoms in the propagation of atmospheric pressure dielectric barrier discharge jets. J Appl Phys 107(4):043304CrossRefGoogle Scholar
  25. 25.
    Niermann B, Boke M, Sadeghi N, Winter J (2010) Space resolved density measurements of argon and helium metastable atoms in radio-frequency generated He–Ar micro-plasmas. Eur Phys J D 60(3):489–495CrossRefGoogle Scholar
  26. 26.
    Sands BL, Leiweke RJ, Ganguly BN (2010) Spatiotemporally resolved Ar (1s5) metastable measurements in a streamer-like He/Ar atmospheric pressure plasma jet. J Phys D Appl Phys 43(28):282001CrossRefGoogle Scholar
  27. 27.
    Bussiahn R, Kindel E, Lange H, Weltmann KD (2010) Spatially and temporally resolved measurements of argon metastable atoms in the effluent of a cold atmospheric pressure plasma jet. J Phys D Appl Phys 43(16):165201CrossRefGoogle Scholar
  28. 28.
    Sakiyama Y, Graves DB, Jarrige J, Laroussi M (2010) Finite element analysis of ring-shaped emission profile in plasma bullet. Appl Phys Lett 96(4):041501CrossRefGoogle Scholar
  29. 29.
    Boeuf J-P, Yang LL, Pitchford LC (2013) Dynamics of a guided streamer (‘plasma bullet’) in a helium jet in air at atmospheric pressure. J Phys D Appl Phys 46(1):015201CrossRefGoogle Scholar
  30. 30.
    Karakas E, Akman MA, Laroussi M (2012) The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements. Plasma Sources Sci Technol 21(3):034016CrossRefGoogle Scholar
  31. 31.
    Sands BL, Ganguly BN, Tachibana K (2008) A streamer-like atmospheric pressure plasma jet. Appl Phys Lett 92(15):151503CrossRefGoogle Scholar
  32. 32.
    Sands BL, Huang SK, Speltz JW, Niekamp MA, Ganguly BN (2013) Role of Penning ionization in the enhancement of streamer channel conductivity and Ar(1s5) production in a He-Ar plasma jet. J Appl Phys 113(15):153303CrossRefGoogle Scholar
  33. 33.
    Heming R, Michels A, Olenici SB, Tombrink S, Franzke J (2009) Electrical generators driving microhollow and dielectric barrier discharges applied for analytical chemistry. J Anal Bioanal Chem 395(3):611–618CrossRefGoogle Scholar
  34. 34.
    Teschke M, Kedzierski J, Finantu-Dinu EG, Korzec D, Engemann J (2005) High-speed photographs of a dielectric barrier atmospheric pressure plasma jet. IEEE Trans Plasma Sci 33(2):310–311CrossRefGoogle Scholar
  35. 35.
    Shi JJ, Zhong FC, Zhang J, Liu DW, Kong MG (2008) A hypersonic plasma bullet train traveling in an atmospheric dielectric-barrier discharge jet. Phys Plasmas 15(1):013504CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vlasta Horvatic
    • 1
    Email author
  • Antje Michels
    • 2
  • Norman Ahlmann
    • 2
  • Günter Jestel
    • 2
  • Damir Veza
    • 3
  • Cedomil Vadla
    • 1
  • Joachim Franzke
    • 2
  1. 1.Institute of PhysicsZagrebCroatia
  2. 2.ISAS—Leibniz Institut für analytische WissenschaftenDortmundGermany
  3. 3.Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations