Analytical and Bioanalytical Chemistry

, Volume 407, Issue 22, pp 6681–6688 | Cite as

LC-MS/MS-based analysis of coenzyme A and short-chain acyl-coenzyme A thioesters

  • Stefan Neubauer
  • Dinh Binh Chu
  • Hans Marx
  • Michael Sauer
  • Stephan Hann
  • Gunda KoellenspergerEmail author
Research Paper


Absolute quantification of intracellular coenzyme A (CoA), coenzyme A disulfide, and short-chain acyl-coenzyme A thioesters was addressed by developing a tailored metabolite profiling method based on liquid chromatography in combination with tandem mass spectrometric detection (LC-MS/MS). A reversed phase chromatographic separation was established which is capable of separating a broad spectrum of CoA, its corresponding derivatives, and their isomers despite the fact that no ion-pairing reagent was used (which was considered as a key advantage of the method). Excellent analytical figures of merit such as high sensitivity (LODs in the nM to sub-nM range) and high repeatability (routinely 4 %; N = 15) were obtained. Method validation comprised a study on standard purity, stability, and recoveries during sample preparation. Uniformly labeled U13C yeast cell extracts offered ideal internal standards for validation purposes and for a quantification exercise in the rumen bacterium Megasphaera elsdenii.


Coenzyme A Short-chain acyl-coenzyme A LC-MS/MS Metabolite profiling Megasphaera elsdenii Stability 

Supplementary material

216_2015_8825_MOESM1_ESM.pdf (258 kb)
ESM 1 (PDF 257 kb)


  1. 1.
    Sauer M, Mattanovich D (2012) Construction of microbial cell factories for industrial bioprocesses. J Chem Technol Biotechnol 87(4):445–450CrossRefGoogle Scholar
  2. 2.
    Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48(no. 1–2):155–171CrossRefGoogle Scholar
  3. 3.
    Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78CrossRefGoogle Scholar
  4. 4.
    Sauer M, Marx H, Mattanovich D (2012) From rumen to industry. Microb Cell Fact 11(no. 1):121CrossRefGoogle Scholar
  5. 5.
    Prabhu R, Altman E, Eiteman MA (2012) Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Appl Environ Microbiol 78(24):8564–8570CrossRefGoogle Scholar
  6. 6.
    King MT, Reiss PD, Cornell NW (1988) Determination of short-chain coenzyme A compounds by reversed-phase high-performance liquid chromatography. Methods Enzymol 166:70–79CrossRefGoogle Scholar
  7. 7.
    Liu G, Chen J, Che P, Ma Y (2003) Separation and quantitation of short-chain coenzyme A’s in biological samples by capillary electrophoresis. Anal Chem 75(1):78–82CrossRefGoogle Scholar
  8. 8.
    Jiang Y, Nikolau B, Ma Y (2010) Separation and quantification of short-chain coenzyme A in plant tissues by capillary electrophoresis with laser-induced fluorescence detection. Anal Methods 2(no. 12):1900CrossRefGoogle Scholar
  9. 9.
    Kasumov T, Martini WZ, Reszko AE, Bian F, Pierce BA, David F, Roe CR, Brunengraber H (2002) Assay of the concentration and (13)C isotopic enrichment of propionyl-CoA, methylmalonyl-CoA, and succinyl-CoA by gas chromatography-mass spectrometry. Anal Biochem 305(1):90–96CrossRefGoogle Scholar
  10. 10.
    Tamvakopoulos CS, Anderson VE (1992) Detection of acyl-coenzyme a thioester intermediates of fatty acid β-oxidation as the N-acylglycines by negative-ion chemical ionization gas chromatography-mass spectrometry. Anal Biochem 200(2):381–387CrossRefGoogle Scholar
  11. 11.
    Hayashi O, Satoh K (2006) Determination of acetyl-CoA and malonyl-CoA in germinating rice seeds using the LC-MS/MS technique. Biosci Biotechnol Biochem 70(11):2676–2681CrossRefGoogle Scholar
  12. 12.
    Gao L, Chiou W, Tang H, Cheng X, Camp HS, Burns DJ (2007) Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS. J Chromatogr B Analyt Technol Biomed Life Sci 853(1–2):303–313CrossRefGoogle Scholar
  13. 13.
    Zimmermann M, Thormann V, Sauer U, Zamboni N (2013) Nontargeted profiling of coenzyme A thioesters in biological samples by tandem mass spectrometry. Anal Chem 85(17):8284–8290CrossRefGoogle Scholar
  14. 14.
    Seifar RM, Ras C, Deshmukh AT, Bekers KM, Suarez-Mendez CA, da Cruz ALB, van Gulik WM, Heijnen JJ (2013) Quantitative analysis of intracellular coenzymes in Saccharomyces cerevisiae using ion pair reversed phase ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1311:115–120CrossRefGoogle Scholar
  15. 15.
    Purves RW, Ambrose SJ, Clark SM, Stout JM, Page JE (2014) Separation of isomeric short-chain acyl-CoAs in plant matrices using ultra-performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 980C:1–7Google Scholar
  16. 16.
    Burns KL, Gelbaum LT, Sullards MC, Bostwick DE, May SW (2005) Iso-coenzyme A. J Biol Chem 280(17):16550–16558CrossRefGoogle Scholar
  17. 17.
    Minkler PE, Kerner J, Kasumov T, Parland W, Hoppel CL (2006) Quantification of malonyl-coenzyme A in tissue specimens by high-performance liquid chromatography/mass spectrometry. Anal Biochem 352(1):24–32CrossRefGoogle Scholar
  18. 18.
    Park JW, Jung WS, Park SR, Park BC, Yoon YJ (2007) Analysis of intracellular short organic acid-coenzyme A esters from actinomycetes using liquid spectrometry., pp 1136–1147Google Scholar
  19. 19.
    Armando JW, Boghigian BA, Pfeifer BA (2012) LC-MS/MS quantification of short-chain acyl-CoA’s in Escherichia coli demonstrates versatile propionyl-CoA synthetase substrate specificity. Lett Appl Microbiol 54(2):140–148CrossRefGoogle Scholar
  20. 20.
    Coulier L, Bas R, Jespersen S, Verheij E, Van Der Werf J, Hankemeier T (2006) Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 78(18):6573–6582CrossRefGoogle Scholar
  21. 21.
    Yang S, Sadilek M, Synovec RE, Lidstrom ME (2009) Liquid chromatography-tandem quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry measurement of targeted metabolites of Methylobacterium extorquens AM1 grown on two different carbon sources. J Chromatogr A 1216(15):3280–3289CrossRefGoogle Scholar
  22. 22.
    Neubauer S, Haberhauer-Troyer C, Klavins K, Russmayer H, Steiger MG, Gasser B, Sauer M, Mattanovich D, Hann S, Koellensperger G (2012) U13C cell extract of Pichia pastoris—a powerful tool for evaluation of sample preparation in metabolomics. J Sep Sci 35(22):3091–3105CrossRefGoogle Scholar
  23. 23.
    Marx H, Graf AB, Tatto NE, Thallinger GG, Mattanovich D, Sauer M (2011) Genome sequence of the ruminal bacterium Megasphaera elsdenii. J Bacteriol 193(19):5578–5579CrossRefGoogle Scholar
  24. 24.
    Duportet X, Aggio RBM, Carneiro S, Villas-Bôas SG (2011) The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics 8(3):410–421CrossRefGoogle Scholar
  25. 25.
    Moffatt JG, Khorana HG (1959) The total synthesis of coenzyme A. J Am Chem Soc 81(5):1265–1265CrossRefGoogle Scholar
  26. 26.
    Michelson AM (1961) Synthesis of coenzyme A. Biochim Biophys Acta 50(3):605–607CrossRefGoogle Scholar
  27. 27.
    Shimizu M, Nagase O, Okada S, Hosokawa Y, Tagawa H (1965) A total synthesis of coenzyme A via thiazoline intermediate. Chem Pharm Bull 13(9):1142–1144CrossRefGoogle Scholar
  28. 28.
    Snyder NW, Basu SS, Zhou Z, Worth AJ, Blair IA (2014) Stable isotope dilution liquid chromatography/mass spectrometry analysis of cellular and tissue medium- and long-chain acyl-coenzyme A thioesters., pp 1840–1848Google Scholar
  29. 29.
    Snyder NW, Tombline G, Worth AJ, Parry RC, Silvers JA, Gillespie KP, Basu SS, Millen J, Goldfarb DS, Blair IA (2015) Production of stable isotope-labeled acyl-coenzyme A thioesters by yeast stable isotope labeling by essential nutrients in cell culture. Anal Biochem 474:59–65CrossRefGoogle Scholar
  30. 30.
    Magnes C, Suppan M, Pieber TR, Moustafa T, Trauner M, Haemmerle G, Sinner FM (2008) Validated comprehensive analytical method for quantification of coenzyme A activated compounds in biological tissues by online solid-phase extraction LC/MS/MS. Anal Chem 80(15):5736–5742CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Stefan Neubauer
    • 1
    • 2
  • Dinh Binh Chu
    • 1
    • 3
  • Hans Marx
    • 4
    • 5
  • Michael Sauer
    • 2
    • 4
    • 5
  • Stephan Hann
    • 1
    • 2
  • Gunda Koellensperger
    • 2
    • 6
    Email author
  1. 1.Department of Chemistry, Division of Analytical ChemistryUniversity of Natural Resources and Life Sciences-BOKUViennaAustria
  2. 2.Austrian Center of Industrial Biotechnology (ACIB)ViennaAustria
  3. 3.Department of Analytical Chemistry, School of Chemical EngineeringHanoi University of Science and TechnologyHanoiVietnam
  4. 4.Department of BiotechnologyUniversity of Natural Resources and Life Sciences-BOKUViennaAustria
  5. 5.CD Laboratory for Biotechnology of GlycerolViennaAustria
  6. 6.Department of Analytical Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria

Personalised recommendations