Analytical and Bioanalytical Chemistry

, Volume 407, Issue 20, pp 6181–6190 | Cite as

A cationic cysteine-hydrazide as an enrichment tool for the mass spectrometric characterization of bacterial free oligosaccharides

  • Kyoung-Soon Jang
  • Roger R. Nani
  • Anastasia Kalli
  • Sergiy Levin
  • Axel Müller
  • Sonja Hess
  • Sarah E. Reisman
  • William M. ClemonsJr.
Research Paper

Abstract

In Campylobacterales and related ε-proteobacteria with N-linked glycosylation (NLG) pathways, free oligosaccharides (fOS) are released into the periplasmic space from lipid-linked precursors by the bacterial oligosaccharyltransferase (PglB). This hydrolysis results in the same molecular structure as the oligosaccharide that is transferred to a protein to be glycosylated. This allowed for the general elucidation of the fOS-branched structures and monosaccharides from a number of species using standard enrichment and mass spectrometry methods. To aid characterization of fOS, hydrazide chemistry has often been used for chemical modification of the reducing part of oligosaccharides resulting in better selectivity and sensitivity in mass spectrometry; however, the removal of the unreacted reagents used for the modification often causes the loss of the sample. Here, we develop a more robust method for fOS purification and characterize glycostructures using complementary tandem mass spectrometry (MS/MS) analysis. A cationic cysteine hydrazide derivative was synthesized to selectively isolate fOS from periplasmic fractions of bacteria. The cysteine hydrazide nicotinamide (Cyhn) probe possesses both thiol and cationic moieties. The former enables reversible conjugation to a thiol-activated solid support, while the latter improves the ionization signal during MS analysis. This enrichment was validated on the well-studied Campylobacter jejuni by identifying fOS from the periplasmic extracts. Using complementary MS/MS analysis, we approximated data of a known structure of the fOS from Campylobacter concisus. This versatile enrichment technique allows for the exploration of a diversity of protein glycosylation pathways.

Keywords

Enrichment Free oligosaccharide Campylobacter Hydrazide Glycomics 

Supplementary material

216_2015_8798_MOESM1_ESM.pdf (855 kb)
ESM 1(PDF 854 kb)

References

  1. 1.
    Linton D, Dorrell N, Hitchen PG, Amber S, Karlyshev AV, Morris HR, Dell A, Valvano MA, Aebi M, Wren BW (2005) Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol Microbiol 55(6):1695–1703CrossRefGoogle Scholar
  2. 2.
    Linton D, Allan E, Karlyshev AV, Cronshaw AD, Wren BW (2002) Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol Microbiol 43(2):497–508CrossRefGoogle Scholar
  3. 3.
    Szymanski CM, Yao R, Ewing CP, Trust TJ, Guerry P (1999) Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol Microbiol 32(5):1022–1030CrossRefGoogle Scholar
  4. 4.
    Schwarz F, Lizak C, Fan YY, Fleurkens S, Kowarik M, Aebi M (2010) Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo. Glycobiology 21:45–54CrossRefGoogle Scholar
  5. 5.
    Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan YY, Reading CA, Chhiba K, Heiss C, Azadi P, Aebi M, Delisa MP (2012) An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol 8(5):434–436CrossRefGoogle Scholar
  6. 6.
    Jervis AJ, Langdon R, Hitchen P, Lawson AJ, Wood A, Fothergill JL, Morris HR, Dell A, Wren B, Linton D (2010) Characterization of N-linked protein glycosylation in Helicobacter pullorum. J Bacteriol 192(19):5228–5236CrossRefGoogle Scholar
  7. 7.
    Nothaft H, Liu X, McNally DJ, Li J, Szymanski CM (2009) Study of free oligosaccharides derived from the bacterial N-glycosylation pathway. Proc Natl Acad Sci U S A 106(35):15019–15024CrossRefGoogle Scholar
  8. 8.
    Graham RLJ, Hess S (2010) Mass spectrometry in the elucidation of the glycoproteome of bacterial pathogens. Curr Proteomics 7(1):57–81CrossRefGoogle Scholar
  9. 9.
    Nothaft H, Scott NE, Vinogradov E, Liu X, Hu R, Beadle B, Fodor C, Miller WG, Li J, Cordwell SJ, Szymanski CM (2012) Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol Cell Proteomics 11:1203–1219CrossRefGoogle Scholar
  10. 10.
    Wohlgemuth J, Karas M, Jiang W, Hendriks R, Andrecht S (2010) Enhanced glyco-profiling by specific glycopeptide enrichment and complementary monolithic nano-LC (ZIC-HILIC/RP18e)/ESI-MS analysis. J Sep Sci 33(6–7):880–890CrossRefGoogle Scholar
  11. 11.
    Neue K, Mormann M, Peter-Katalinic J, Pohlentz G (2011) Elucidation of glycoprotein structures by unspecific proteolysis and direct nanoESI mass spectrometric analysis of ZIC-HILIC-enriched glycopeptides. J Proteome Res 10(5):2248–2260CrossRefGoogle Scholar
  12. 12.
    Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397(8):3457–3481CrossRefGoogle Scholar
  13. 13.
    Gil GC, Kim YG, Kim BG (2008) A relative and absolute quantification of neutral N-linked oligosaccharides using modification with carboxymethyl trimethylammonium hydrazide and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 379(1):45–59CrossRefGoogle Scholar
  14. 14.
    Jang KS, Kim YG, Gil GC, Park SH, Kim BG (2009) Mass spectrometric quantification of neutral and sialylated N-glycans from a recombinant therapeutic glycoprotein produced in the two Chinese hamster ovary cell lines. Anal Biochem 386(2):228–236CrossRefGoogle Scholar
  15. 15.
    Muller A, Beeby M, McDowall AW, Chow J, Jensen GJ, Clemons WM Jr (2014) Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni. Microbiologyopen 3(5):702–710CrossRefGoogle Scholar
  16. 16.
    Jang KS, Sweredoski MJ, Graham RL, Hess S, Clemons WM Jr (2014) Comprehensive proteomic profiling of outer membrane vesicles from Campylobacter jejuni. J Proteomics 98:90–98CrossRefGoogle Scholar
  17. 17.
    Kalli A, Hess S (2012) Fragmentation of singly, doubly, and triply charged hydrogen deficient peptide radical cations in infrared multiphoton dissociation and electron induced dissociation. J Am Soc Mass Spectrom 23(2):244–263CrossRefGoogle Scholar
  18. 18.
    Liu X, McNally DJ, Nothaft H, Szymanski CM, Brisson JR, Li J (2006) Mass spectrometry-based glycomics strategy for exploring N-linked glycosylation in eukaryotes and bacteria. Anal Chem 78(17):6081–6087CrossRefGoogle Scholar
  19. 19.
    Duffin KL, Welply JK, Huang E, Henion JD (1992) Characterization of N-linked oligosaccharides by electrospray and tandem mass spectrometry. Anal Chem 64(13):1440–1448CrossRefGoogle Scholar
  20. 20.
    Reinhold VN, Reinhold BB, Costello CE (1995) Carbohydrate molecular weight profiling, sequence, linkage, and branching data: ES-MS and CID. Anal Chem 67(11):1772–1784CrossRefGoogle Scholar
  21. 21.
    Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298(5599):1790–1793CrossRefGoogle Scholar
  22. 22.
    Jervis AJ, Butler JA, Lawson AJ, Langdon R, Wren BW, Linton D (2012) Characterization of the structurally diverse N-linked glycans of Campylobacter species. J Bacteriol 194(9):2355–2362CrossRefGoogle Scholar
  23. 23.
    Little DP, Speir JP, Senko MW, O'Connor PB, McLafferty FW (1994) Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem 66(18):2809–2815CrossRefGoogle Scholar
  24. 24.
    Woodin RL, Bomse DS, Beauchamp JL (1978) Multiphoton dissociation of molecules with low power continuous wave infrared laser radiation. J Am Chem Soc 100(10):3248–3250CrossRefGoogle Scholar
  25. 25.
    Budnik BA, Haselmann KF, Elkin YN, Gorbach VI, Zubarev RA (2003) Applications of electron-ion dissociation reactions for analysis of polycationic chitooligosaccharides in Fourier transform mass spectrometry. Anal Chem 75(21):5994–6001CrossRefGoogle Scholar
  26. 26.
    Kalli A, Grigorean G, Hakansson K (2011) Electron induced dissociation of singly deprotonated peptides. J Am Soc Mass Spectrom 22(12):2209–2221CrossRefGoogle Scholar
  27. 27.
    Wolff JJ, Laremore TN, Aslam H, Linhardt RJ, Amster IJ (2008) Electron-induced dissociation of glycosaminoglycan tetrasaccharides. J Am Soc Mass Spectrom 19(10):1449–1458CrossRefGoogle Scholar
  28. 28.
    Gord JR, Horning SR, Wood JM, Cooks RG, Freiser BS (1993) Energy deposition during electron-induced dissociation. J Am Soc Mass Spectrom 4(2):145–151CrossRefGoogle Scholar
  29. 29.
    Wang Z, Larocque S, Vinogradov E, Brisson JR, Dacanay A, Greenwell M, Brown LL, Li J, Altman E (2004) Structural studies of the capsular polysaccharide and lipopolysaccharide O-antigen of Aeromonas salmonicida strain 80204–1 produced under in vitro and in vivo growth conditions. Eur J Biochem 271(22):4507–4516CrossRefGoogle Scholar
  30. 30.
    Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in Fab-Ms Ms spectra of glycoconjugates. Glycoconj J 5(4):397–409CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kyoung-Soon Jang
    • 1
    • 3
  • Roger R. Nani
    • 1
  • Anastasia Kalli
    • 2
  • Sergiy Levin
    • 1
  • Axel Müller
    • 1
  • Sonja Hess
    • 2
  • Sarah E. Reisman
    • 1
  • William M. ClemonsJr.
    • 1
  1. 1.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Proteome Exploration LaboratoryBeckman Institute, California Institute of TechnologyPasadenaUSA
  3. 3.Biomedical Omics Group, Division of Bioconvergence AnalysisKorea Basic Science InstituteCheongjuSouth Korea

Personalised recommendations