Analytical and Bioanalytical Chemistry

, Volume 407, Issue 20, pp 6105–6116 | Cite as

Intraspecific variations in Conus purpurascens injected venom using LC/MALDI-TOF-MS and LC-ESI-TripleTOF-MS

  • Alena M. Rodriguez
  • Sebastien Dutertre
  • Richard J. Lewis
  • Frank MaríEmail author
Research Paper


The venom of cone snails is composed of highly modified peptides (conopeptides) that target a variety of ion channels and receptors. The venom of these marine gastropods represents a largely untapped resource of bioactive compounds of potential pharmaceutical value. Here, we use a combination of bioanalytical techniques to uncover the extent of venom expression variability in Conus purpurascens, a fish-hunting cone snail species. The injected venom of nine specimens of C. purpurascens was separated by reversed-phase high-performance liquid chromatography (RP-HPLC), and fractions were analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) in parallel with liquid chromatography-electrospray ionization (LC-ESI)-TripleTOF-MS to compare standard analytical protocols used in preparative bioassay-guided fractionations with a deeper peptidomic analysis. Here, we show that C. purpurascens exhibits pronounced intraspecific venom variability. RP-HPLC fractionation followed by MALDI-TOF-MS analysis of the injected venom of these nine specimens identified 463 distinct masses, with none common to all specimens. Using LC-ESI-TripleTOF-MS, the injected venom of these nine specimens yielded a total of 5517 unique masses. We also compare the injected venom of two specimens with their corresponding dissected venom. We found 2566 and 1990 unique masses for the dissected venom compared to 941 and 1959 masses in their corresponding injected venom. Of these, 742 and 1004 masses overlapped between the dissected and injected venom, respectively. The results indicate that larger conopeptide libraries can be assessed by studying multiple individuals of a given cone snail species. This expanded library of conopeptides enhances the opportunities for discovery of molecular modulators with direct relevance to human therapeutics.

Graphical Abstract

The venom of cone snails are extraordinarily complex mixtures of highly modified peptides. Venom analysis requires separation through RP-HPLC followed by MALDI-TOF mass spectrometry or direct analysis using LC-ESI-TripleTOF-MS. Using these techniques, venom intraspecific variability and comparison between injected and dissected were assessed


Conotoxin Conopeptide Cone snail Liquid chromatography Mass spectrometry Peptidomics 



We thank C. Moller, N. Vanderweit, and H. Cano for their help with isolating injected venom from C. purpurascens. This work was partially funded by the Florida Sea Grant Program (Grant R/LR-MB-28).


  1. 1.
    Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2:790–802CrossRefGoogle Scholar
  2. 2.
    Sollod BL, Wilson D, Zhaxybayeva O, Gogarten JP, Drinkwater R, King GF (2005) Were arachnids the first to use combinatorial peptide libraries? Peptides 26:131–139CrossRefGoogle Scholar
  3. 3.
    Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, Lewis RJ, King GF (2011) Venomics: a new paradigm for natural products-based drug discovery. Amino Acids 40:15–28CrossRefGoogle Scholar
  4. 4.
    Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M (2001) Mechanisms for evolving hypervariability: the case of conopeptides. Mol Biol Evol 18:120–131CrossRefGoogle Scholar
  5. 5.
    Espiritu DJD, Watkins M, Dia-Monje V, Cartier GE, Cruz LJ, Olivera BM (2001) Venomous cone snails: molecular phylogeny and the generation of toxin diversity. Toxicon 39:1899–1916CrossRefGoogle Scholar
  6. 6.
    Harvey AL (2014) Toxins and drug discovery. Toxicon 92:193–200CrossRefGoogle Scholar
  7. 7.
    Miljanich GP (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 11:3029–3040CrossRefGoogle Scholar
  8. 8.
    Puillandre N, Bouchet P, Duda TF Jr, Kauferstein S, Kohn AJ, Olivera BM, Watkins M, Meyer C (2014) Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). Mol Phylogenet Evol 78:290–303CrossRefGoogle Scholar
  9. 9.
    Davis J, Jones A, Lewis RJ (2009) Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS. Peptides 30:1222–1227CrossRefGoogle Scholar
  10. 10.
    Dutertre S, Jin A, Kaas Q, Jones A, Alewood PF, Lewis RJ (2013) Deep venomics reveals the mechanism for expanded diversity in cone snail venom. Mol Cell Proteomics 12:312–329CrossRefGoogle Scholar
  11. 11.
    Romeo C, Di Francesco L, Oliverio M, Palazzo P, Massilia GR, Ascenzi P, Polticelli F, Schinina ME (2008) Conus ventricosus venom peptides profiling by HPLC-MS: a new insight in the intraspecific variation. J Sep Sci 31:488–498CrossRefGoogle Scholar
  12. 12.
    Biass D, Dutertre S, Gerbault A, Menou JL, Offord R, Favreau P, Stocklin R (2009) Comparative proteomic study of the venom of the piscivorous cone snail Conus consors. J Proteomics 72:210–218CrossRefGoogle Scholar
  13. 13.
    Abdel-Rahman MA, Abdel-Nabi IM, El-Naggar MS, Abbas OA, Strong PN (2011) Intraspecific variation in the venom of the vermivorous cone snail Conus vexillum. Comp Biochem Physiol Part C: Toxicol Pharmacol 154:318–325Google Scholar
  14. 14.
    Lu A, Yang L, Xu S, Wang C (2014) Various conotoxin diversifications revealed by a venomic study of Conus flavidus. Mol Cell Proteomics 13:105–118CrossRefGoogle Scholar
  15. 15.
    Hopkins C, Grilley M, Miller C, Shon K, Cruz LJ, Gray WR, Dykert J, Rivier J, Yoshikami D, Olivera BM (1995) A new family of Conus peptides targeted to the nicotinic acetylcholine receptor. J Biol Chem 270:22361–22367CrossRefGoogle Scholar
  16. 16.
    Jakubowski JA, Kelley WP, Sweedler JV, Gilly WF, Schulz JR (2005) Intraspecific variation of venom injected by fish-hunting Conus snails. J Exp Biol 208:2873–2883CrossRefGoogle Scholar
  17. 17.
    Dutertre S, Jin AH, Vetter I, Hamilton B, Sunagar K, Lavergne V, Dutertre V, Fry BG, Antunes A, Venter DJ, Alewood PF, Lewis RJ (2014) Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun 5:3521Google Scholar
  18. 18.
    Dutertre S, Jin AH, Alewood PF, Lewis RJ (2014) Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon 91:135–144CrossRefGoogle Scholar
  19. 19.
    Dutertre S, Biass D, Stocklin R, Favreau P (2010) Dramatic intraspecimen variations within the injected venom of Conus consors: an unsuspected contribution to venom diversity. Toxicon 55:1453–1462CrossRefGoogle Scholar
  20. 20.
    Rivera-Ortiz JA, Cano H, Mari F (2011) Intraspecies variability and conopeptide profiling of the injected venom of Conus ermineus. Peptides 32:306–316CrossRefGoogle Scholar
  21. 21.
    Chun JB, Baker MR, Kim do H, Leroy M, Toribo P, Bingham JP (2012) Cone snail milked venom dynamics—a quantitative study of Conus purpurascens. Toxicon 60:83–94CrossRefGoogle Scholar
  22. 22.
    Prator CA, Murayama KM, Schulz JR (2014) Venom variation during prey capture by the cone snail, Conus textile. PLoS One 9, e98991CrossRefGoogle Scholar
  23. 23.
    Escoubas P, Quinton L, Nicholson GM (2008) Venomics: unravelling the complexity of animal venoms with mass spectrometry. J Mass Spectrom 43:279–295CrossRefGoogle Scholar
  24. 24.
    Prashanth JR, Lewis RJ, Dutertre S (2012) Towards an integrated venomics approach for accelerated conopeptide discovery. Toxicon 60:470–477CrossRefGoogle Scholar
  25. 25.
    Kaas Q, Westermann JC, Halai R, Wang CK, Craik DJ (2008) ConoServer, a database for conopeptide sequences and structures. Bioinformatics 24:445–446CrossRefGoogle Scholar
  26. 26.
    Kaas Q, Yu R, Jin AH, Dutertre S, Craik DJ (2012) ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res 40:325–330CrossRefGoogle Scholar
  27. 27.
    Shon K, Grilley M, Jacobsen R, Cartier GE, Hopkins C, Gray WR, Watkins M, Hillyard DR, Rivier J, Torres J, Yoshikami D, Olivera BM (1997) A noncompetitive peptide inhibitor of the nicotinic acetylcholine receptor from. Conus purpurascens venom. Biochemistry 36:9581–9587CrossRefGoogle Scholar
  28. 28.
    Bingham JP, Baker MR, Chun JB (2012) Analysis of a cone snail’s killer cocktail—the milked venom of Conus geographus. Toxicon 60:1166–1170CrossRefGoogle Scholar
  29. 29.
    Terlau H, Shon K, Grilley M, Stocker M, Stuhmer W, Olivera BM (1996) Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature 381:148–151CrossRefGoogle Scholar
  30. 30.
    Jacobsen R, Jimenez EC, Grilley M, Watkins M, Hillyard DR, Cruz LJ, Olivera BM (1998) The contryphans, a D-tryptophan-containing family of Conus peptides: interconversion between conformers. J Pept Res 51:173–179CrossRefGoogle Scholar
  31. 31.
    Lopez-Vera E, Jacobsen RB, Ellison M, Olivera BM, Teichert RW (2007) A novel alpha conotoxin (α-PIB) isolated from C. purpurascens is selective for skeletal muscle nicotinic acetylcholine receptors. Toxicon 49:1193–1199CrossRefGoogle Scholar
  32. 32.
    Dowell C, Olivera BM, Garrett JE, Staheli ST, Watkins M, Kuryatov A, Yoshikami D, Lindstrom JM, McIntosh JM (2003) α-Conotoxin PIA is selective for α6 subunit-containing nicotinic acetylcholine receptors. J Neurosci 23:8445–8452Google Scholar
  33. 33.
    Teichert RW, Jacobsen R, Terlau H, Yoshikami D, Olivera BM (2007) Discovery and characterization of the short κA-conotoxins: a novel subfamily of excitatory conotoxins. Toxicon 49:318–328CrossRefGoogle Scholar
  34. 34.
    Shon K, Olivera BM, Watkins M, Jacobsen R, Gray WR, Floresca CZ, Cruz LJ, Hillyard DR, Brink A, Terlau H, Yoshikami D (1998) μ-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes. J Neurosci 18:4473–4481Google Scholar
  35. 35.
    Van Wagoner RM, Jacobsen RB, Olivera BM, Ireland CM (2003) Characterization and three-dimensional structure determination of ψ-conotoxin PIIIF, a novel noncompetitive antagonist of nicotinic acetylcholine receptors. Biochemistry 42:6353–6362CrossRefGoogle Scholar
  36. 36.
    Shon KM, Marsh M, Yoshikami D, Hall AR, Kurz B, Gray WR, Imperial JS, Hillyard DR, Olivera BM (1995) Purification, characterization, synthesis, and cloning of the lockjaw peptide from Conus purpurascens venom. Biochemistry 34:4913–4918CrossRefGoogle Scholar
  37. 37.
    Gowd KH, Twede V, Watkins M, Krishnan KS, Teichert RW, Bulaj G, Olivera BM (2008) Conantokin-P, an unusual conantokin with a long disulfide loop. Toxicon 52:203–213CrossRefGoogle Scholar
  38. 38.
    Shon KJ, Stocker M, Terlau H, Stuhmer W, Jacobsen R, Walker C, Grilley M, Watkins M, Hillyard DR, Gray WR, Olivera BM (1998) κ-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel. J Biol Chem 273:33–38CrossRefGoogle Scholar
  39. 39.
    Moller C, Mari F (2011) 9.3 KDa components of the injected venom of Conus purpurascens define a new five-disulfide conotoxin framework. Biopolymers 96:158–165CrossRefGoogle Scholar
  40. 40.
    Franco A, Pisarewicz K, Moller C, Mora D, Fields GB, Mari F (2006) Hyperhydroxylation: a new strategy for neuronal targeting by venomous marine molluscs. Prog Mol Subcell Biol 43:83–103CrossRefGoogle Scholar
  41. 41.
    Aguilar MB, Lopez-Vera E, Ortiz E, Becerril B, Possani LD, Olivera BM, Heimer de la Cotera EP (2005) A novel conotoxin from Conus delessertii with posttranslationally modified lysine residues. Biochemistry 44:11130–11136CrossRefGoogle Scholar
  42. 42.
    Pisarewicz K, Mora D, Pflueger FC, Fields GB, Mari F (2005) Polypeptide chains containing D-γ-hydroxyvaline. J Am Chem Soc 127:6207–6215CrossRefGoogle Scholar
  43. 43.
    Sunagar K, Undheim EA, Scheib H, Gren EC, Cochran C, Person CE, Koludarov I, Kelln W, Hayes WK, King GF, Antunes A, Fry BG (2014) Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications. J Proteomics 99:68–83CrossRefGoogle Scholar
  44. 44.
    Jorge RJ, Monteiro HS, Goncalves-Machado L, Guarnieri MC, Ximenes RM, Borges-Nojosa DM, Luna KP, Zingali RB, Correa-Netto C, Gutierrez JM, Sanz L, Calvete JJ, Pla D (2015) Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil. J Proteomics 114:93–114CrossRefGoogle Scholar
  45. 45.
    Valdez-Velazquez LL, Quintero-Hernandez V, Romero-Gutierrez MT, Coronas FI, Possani LD (2013) Mass fingerprinting of the venom and transcriptome of venom gland of scorpion Centruroides tecomanus. PLoS One 8, e66486CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Huang Y, He Q, Liu J, Luo J, Zhu L, Lu S, Huang P, Chen X, Zeng X, Liang S (2014) Toxin diversity revealed by a transcriptomic study of Ornithoctonus huwena. PLoS One 9, e100682CrossRefGoogle Scholar
  47. 47.
    Andrews GL, Simons BL, Young JB, Hawkridge AM, Muddiman DC (2011) Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal Chem 83:5442–5446Google Scholar
  48. 48.
    Leonardi A, Biass D, Kordis D, Stocklin R, Favreau P, Krizaj I (2012) Conus consors snail venom proteomics proposes functions, pathways, and novel families involved in its venomic system. J Proteome Res 11:5046–5058CrossRefGoogle Scholar
  49. 49.
    Moller C, Vanderweit N, Bubis J, Mari F (2013) Comparative analysis of proteases in the injected and dissected venom of cone snail species. Toxicon 65:59–67CrossRefGoogle Scholar
  50. 50.
    Terlau H, Olivera BM (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev 84:41–68CrossRefGoogle Scholar
  51. 51.
    Olivera BM, Gray WR, Zeikus R, McIntosh JM, Varga J, Rivier J, de Santos V, Cruz LJ (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230:1338–1343CrossRefGoogle Scholar
  52. 52.
    Duda TF Jr, Palumbi SR (2004) Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus Conus. P Roy Soc B-Biol Sci 271:1165–1174CrossRefGoogle Scholar
  53. 53.
    Buczek O, Bulaj G, Olivera BM (2005) Conotoxins and the posttranslational modification of secreted gene products. Cell Mol Life Sci 62:3067–3079CrossRefGoogle Scholar
  54. 54.
    Milne TJ, Abbenante G, Tyndall JD, Halliday J, Lewis RJ (2003) Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. J Biol Chem 278:31105–31110CrossRefGoogle Scholar
  55. 55.
    Bhardwaj C, Hanley L (2014) Ion sources for mass spectrometric identification and imaging of molecular species. Nat Prod Rep 31:756–767CrossRefGoogle Scholar
  56. 56.
    Strupat K (2005) Molecular weight determination of peptides and proteins by ESI and MALDI. Methods Enzymol 405:1–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alena M. Rodriguez
    • 1
  • Sebastien Dutertre
    • 2
    • 3
  • Richard J. Lewis
    • 2
  • Frank Marí
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Division of Chemistry and Structural Biology, The Institute for Molecular BioscienceThe University of QueenslandSt LuciaAustralia
  3. 3.Institut des Biomolécules Max Mousseron, UMR 5247Université Montpellier 2-CNRSMontpellier Cedex 5France

Personalised recommendations