Analytical and Bioanalytical Chemistry

, Volume 407, Issue 19, pp 5661–5671 | Cite as

Raman spectroscopic characterisation of resin-infiltrated hypomineralised enamel

Research Paper

Abstract

Raman spectroscopy was used to investigate how the effect of pre-treatment protocols, with combinations of hydrochloric acid (HCl), sodium hypochlorite (NaOCl) and hydrogen peroxide (H2O2), for molar–incisor hypo-mineralisation (MIH) altered the penetration depth of polymer infiltrants (ICON, DMG, Hamburg, Germany). Furthermore, the effect on the structure of the MIH portions of the teeth with treatment is examined using multivariate analysis of spectra. It was found that pre-treatment protocols improved penetration depths. The structure of the MIH portion post-treatment appeared much closer to that of normal enamel suggesting a diminution of protein in the MIH region with treatment.

Keywords

Raman spectroscopy Resin infiltration Hypomineralisation Enamel 

Supplementary material

216_2015_8742_MOESM1_ESM.pdf (530 kb)
ESM 1(PDF 529 kb)

References

  1. 1.
    Simmer J, Fincham A (1995) Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6(2):84–108CrossRefGoogle Scholar
  2. 2.
    Internationale FD (1992) A review of the developmental defects of enamel index (DDE Index). Commission on Oral Health, Research & Epidemiology. Report of an FDI Working Group. Int Dent J 42(6):411–426Google Scholar
  3. 3.
    Jalevik B, Klingberg G, Barregard L, Noran JG (2001) The prevalence of demarcated opacities in permanent first molars in a group of Swedish children. Acta Odontol Scand 59(5):255–260CrossRefGoogle Scholar
  4. 4.
    Kemoli A (2009) Prevalence of molar incisor hypomineralisation in six to eight year-olds in two rural divisions in Kenya. East Afr Med J 85(10):514–520CrossRefGoogle Scholar
  5. 5.
    Kuscu OO, Caglar E, Aslan S, Durmusoglu E, Karademir A, Sandalli N (2009) The prevalence of molar incisor hypomineralization (MIH) in a group of children in a highly polluted urban region and a windfarm‐green energy island. Int J Paediatr Dent 19(3):176–185CrossRefGoogle Scholar
  6. 6.
    Lygidakis N, Dimou G, Briseniou E (2008) Molar-incisor-hypomineralisation (MIH). Retrospective clinical study in Greek children. I. Prevalence and defect characteristics. Eur Arch Paediatr Dent 9(4):200CrossRefGoogle Scholar
  7. 7.
    Mahoney E, Morrison D (2009) The prevalence of molar-incisor hypomineralisation (MIH) in Wainuiomata children. N Z Dent J 105(4):121Google Scholar
  8. 8.
    Parikh D, Ganesh M, Bhaskar V (2012) Prevalence and characteristics of molar incisor hypomineralisation (MIH) in the child population residing in Gandhinagar, Gujarat, India. Eur Arch Paediatr Dent 13(1):21–26CrossRefGoogle Scholar
  9. 9.
    Calderara P, Gerthoux PM, Mocarelli P, Lukinmaa P-L, Tramacere P, Alaluusua S (2005) The prevalence of molar incisor hypomineralisation (MIH) in a group of Italian school children. Eur Arch Paediatr Dent 6(2):79Google Scholar
  10. 10.
    Cho SY, Ki Y, Chu V (2008) Molar incisor hypomineralization in Hong Kong Chinese children. Int J Paediatr Dent 18(5):348–352CrossRefGoogle Scholar
  11. 11.
    Costa‐Silva D, Maria C, Jeremias F, Souza D, Feltrin J, De Cassia Loiola Cordeiro R, Santos‐Pinto L, Cilense Zuanon AC (2010) Molar incisor hypomineralization: prevalence, severity and clinical consequences in Brazilian children. Int J Paediatr Dent 20(6):426–434CrossRefGoogle Scholar
  12. 12.
    Jalevik B (2001) Enamel hypomineralization in permanent first molars. A clinical, histo-morphological and biochemical study. Swed Dent J Suppl 149:1Google Scholar
  13. 13.
    Fearne J, Anderson P, Davis G (2004) 3D X-ray microscopic study of the extent of variations in enamel density in first permanent molars with idiopathic enamel hypomineralisation. Br Dent J 196(10):634–638CrossRefGoogle Scholar
  14. 14.
    Farah RA, Monk BC, Swain MV, Drummond BK (2010) Protein content of molar–incisor hypomineralisation enamel. J Dent 38(7):591–596CrossRefGoogle Scholar
  15. 15.
    Fraser SJ, Natarajan AK, Clark ASS, Drummond BK, Gordon KC (2015) A Raman spectroscopic study of teeth affected with molar-incisor hypomineralisation. J Raman Spectrosc 46(2):202–210. doi:10.1002/jrs.4635 CrossRefGoogle Scholar
  16. 16.
    Farah R, Swain M, Drummond B, Cook R, Atieh M (2010) Mineral density of hypomineralised enamel. J Dent 38(1):50–58CrossRefGoogle Scholar
  17. 17.
    Mahoney EK, Rohanizadeh R, Ismail F, Kilpatrick N, Swain M (2004) Mechanical properties and microstructure of hypomineralised enamel of permanent teeth. Biomaterials 25(20):5091–5100CrossRefGoogle Scholar
  18. 18.
    Jalevik B, Odelius H, Dietz W, Noren J (2001) Secondary ion mass spectrometry and X-ray microanalysis of hypomineralized enamel in human permanent first molars. Arch Oral Biol 46(3):239–247CrossRefGoogle Scholar
  19. 19.
    Xie Z, Kilpatrick NM, Swain MV, Munroe PR, Hoffman M (2008) Transmission electron microscope characterisation of molar-incisor-hypomineralisation. J Mater Sci Mater Med 19(10):3187–3192CrossRefGoogle Scholar
  20. 20.
    Mangum J, Crombie F, Kilpatrick N, Manton D, Hubbard M (2010) Surface integrity governs the proteome of hypomineralized enamel. J Dent Res 89(10):1160–1165CrossRefGoogle Scholar
  21. 21.
    William V, Burrow MF, Palamara JE, Messer LB (2006) Microshear bond strength of resin composite to teeth affected by molar hypomineralization using 2 adhesive systems. Paediatr Dent 28(3):233–241Google Scholar
  22. 22.
    Saroglu I, Aras S, Oztas D (2006) Effect of deproteinization on composite bond strength in hypocalcified amelogenesis imperfecta. Oral Dis 12(3):305–308CrossRefGoogle Scholar
  23. 23.
    Venezie RD, Vadiakas G, Christensen JR, Wright J (1994) Enamel pretreatment with sodium hypochlorite to enhance bonding in hypocalcified amelogenesis imperfecta: case report and SEM analysis. Paediatr Dent 16:433–436Google Scholar
  24. 24.
    Crombie F, Cochrane N, Manton D, Palamara J, Reynolds E (2013) Mineralisation of developmentally hypomineralised human enamel in vitro. Caries Res 47(3):259–263CrossRefGoogle Scholar
  25. 25.
    Crombie F, Manton D, Palamara J, Reynolds E (2014) Resin infiltration of developmentally hypomineralised enamel. Int J Paediatr Dent 24(1):51–55CrossRefGoogle Scholar
  26. 26.
    Ashtikar M, Matthäus C, Schmitt M, Krafft C, Fahr A, Popp J (2013) Non-invasive depth profile imaging of the stratum corneum using confocal Raman microscopy: first insights into the method. Eur J Pharm Sci 50(5):601–608CrossRefGoogle Scholar
  27. 27.
    Baldock C, Rintoul L, Keevil S, Pope J, George G (1998) Fourier transform Raman spectroscopy of polyacrylamide gels (PAGs) for radiation dosimetry. Phys Med Biol 43(12):3617CrossRefGoogle Scholar
  28. 28.
    Balooch G, Marshall G, Marshall S, Warren O, Asif SS, Balooch M (2004) Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J Biomech 37(8):1223–1232CrossRefGoogle Scholar
  29. 29.
    Carter EA, Tam KK, Armstrong RS, Lay PA (2009) Vibrational spectroscopic mapping and imaging of tissues and cells. Biophys Rev 1(2):95–103CrossRefGoogle Scholar
  30. 30.
    Dusevich V, Xu C, Wang Y, Walker MP, Gorski JP (2012) Identification of a protein-containing enamel matrix layer which bridges with the dentine–enamel junction of adult human teeth. Arch Oral Biol 57(12):1585–1594CrossRefGoogle Scholar
  31. 31.
    Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HD, Mulder T, McLean R, Langridge J, Papadopoulos D (2007) Physical characterization of component particles included in dry powder inhalers. I. Strategy review and static characteristics. J Pharm Sci 96(5):1282–1301CrossRefGoogle Scholar
  32. 32.
    Lademann J, Meinke M, Schanzer S, Richter H, Darvin M, Haag S, Fluhr J, Weigmann HJ, Sterry W, Patzelt A (2012) In vivo methods for the analysis of the penetration of topically applied substances in and through the skin barrier. Int J Cosmet Sci 34(6):551–559CrossRefGoogle Scholar
  33. 33.
    Mohanty B, Dadlani D, Mahoney D, Mann A (2012) Characterizing and identifying incipient carious lesions in dental enamel using micro-Raman spectroscopy. Caries Res 47(1):27–33CrossRefGoogle Scholar
  34. 34.
    Smith G (2012) A Raman spectroscopic study of paint and dairy samples. University of OtagoGoogle Scholar
  35. 35.
    Wentrup‐Byrne E, Armstrong CA, Armstrong RS, Collins BM (1997) Fourier transform Raman microscopic mapping of the molecular components in a human tooth. J Raman Spectrosc 28(2–3):151–158CrossRefGoogle Scholar
  36. 36.
    Schulze K, Balooch M, Balooch G, Marshall G, Marshall S (2004) Micro‐Raman spectroscopic investigation of dental calcified tissues. J Biomed Mater Res Part A 69(2):286–293CrossRefGoogle Scholar
  37. 37.
    Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5(3):259–268CrossRefGoogle Scholar
  38. 38.
    Nishino M, Yamashita S, Aoba T, Okazaki M, Moriwaki Y (1981) The laser-Raman spectroscopic studies on human-enamel and precipitated carbonate-containing apatites. J Dent Res 60(3):751–755. doi:10.1177/00220345810600031601 CrossRefGoogle Scholar
  39. 39.
    Tsuda H, Arends J (1994) Orientational micro-Raman spectroscopy on hydroxyapatite single-crystals and human enamel crystallites. J Dent Res 73(11):1703–1710Google Scholar
  40. 40.
    Brody RH, Edwards HGM, Pollard AM (2001) Chemometric methods applied to the differentiation of Fourier-transform Raman spectra of ivories. Anal Chim Acta 427(2):223–232. doi:10.1016/s0003-2670(00)01206-x CrossRefGoogle Scholar
  41. 41.
    Edwards HGM, Williams AC, Farwell DW (1995) Palaeodental studies using FT-Raman spectroscopy. Biospectroscopy 1(1):29–36. doi:10.1002/bspy.350010105 CrossRefGoogle Scholar
  42. 42.
    Xu C, Reed R, Gorski JP, Wang Y, Walker MP (2012) The distribution of carbonate in enamel and its correlation with structure and mechanical properties. J Mater Sci 47(23):8035–8043. doi:10.1007/s10853-012-6693-7 CrossRefGoogle Scholar
  43. 43.
    Kirchner M, Edwards H, Lucy D, Pollard A (1997) Ancient and modern specimens of human teeth: a Fourier transform Raman spectroscopic study. J Raman Spectrosc 28(2–3):171–178CrossRefGoogle Scholar
  44. 44.
    Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42(3):476–482. doi:10.1016/j.bone.2007.12.001 CrossRefGoogle Scholar
  45. 45.
    Yerramshetty JS, Lind C, Akkus O (2006) The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone 39(6):1236–1243. doi:10.1016/j.bone.2006.06.002 CrossRefGoogle Scholar
  46. 46.
    McCreadie BR, Morris MD, Chen T-C, Rao DS, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39(6):1190–1195. doi:10.1016/j.bone.2006.06.008 CrossRefGoogle Scholar
  47. 47.
    Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat Res 469(8):2160–2169. doi:10.1007/s11999-010-1692-y CrossRefGoogle Scholar
  48. 48.
    Thomas DB, Fordyce RE, Frew RD, Gordon KC (2007) A rapid, non-destructive method of detecting diagenetic alteration in fossil bone using Raman spectroscopy. J Raman Spectrosc 38(12):1533–1537. doi:10.1002/jrs.1851 CrossRefGoogle Scholar
  49. 49.
    Thomas DB, McGoverin CM, Fordyce RE, Frew RD, Gordon KC (2011) Raman spectroscopy of fossil bioapatite—a proxy for diagenetic alteration of the oxygen isotope composition. Palaeogeogr Palaeoclimatol Palaeoecol 310(1–2):62–70. doi:10.1016/j.palaeo.2011.06.016 CrossRefGoogle Scholar
  50. 50.
    Demul FFM, Otto C, Greve J, Arends J, Tenbosch JJ (1988) Calculation of the Raman line broadening on carbonation in synthetic hydroxyapatite. J Raman Spectrosc 19(1):13–21. doi:10.1002/jrs.1250190104 CrossRefGoogle Scholar
  51. 51.
    Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63(6):475–481CrossRefGoogle Scholar
  52. 52.
    Sauer GR, Zunic WB, Durig JR, Wuthier RE (1994) Fourier-transform Raman-spectroscopy of synthetic and biological calcium phosphates. Calcif Tissue Int 54(5):414–420. doi:10.1007/bf00305529 CrossRefGoogle Scholar
  53. 53.
    Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28(19):3043–3054. doi:10.1016/j.biomaterials.2007.02.028 CrossRefGoogle Scholar
  54. 54.
    Awonusi A, Morris MD, Tecklenburg MMJ (2007) Carbonate assignment and calibration in the raman spectrum of apatite. Calcif Tissue Int 81(1):46–52. doi:10.1007/s00223-007-9034-0 CrossRefGoogle Scholar
  55. 55.
    Frushour BG, Koenig JL (1975) Raman-scattering of collagen, gelatin, and elastin. Biopolymers 14(2):379–391. doi:10.1002/bip.1975.360140211 CrossRefGoogle Scholar
  56. 56.
    Lopes CB, Pinheiro AL, Sathaiah S, Duarte J, Cristinamartins M (2005) Infrared laser light reduces loading time of dental implants: a Raman spectroscopic study. Photomed Laser Surg 23(1):27–31CrossRefGoogle Scholar
  57. 57.
    Lopes CB, Pinheiro AL, Sathaiah S, Silva NSD, Salgado MA (2007) Infrared laser photobiomodulation (λ 830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25(2):96–101CrossRefGoogle Scholar
  58. 58.
    Paris SA, Dorfer CE, Noren JG, Meyer-Lueckel H (2013) Resin infiltration of hypomineralised enamel in MIH-molars. Paper presented at the IADR General Session, Seattle, WashingtonGoogle Scholar
  59. 59.
    Jalevik B, Dietz W, Noren J (2005) Scanning electron micrograph analysis of hypomineralized enamel in permanent first molars. Int J Paediatr Dent 15(4):233–240CrossRefGoogle Scholar
  60. 60.
    Iijima Y, Takagi O, Duschner H, Ruben J, Arends J (1998) Influence of nail varnish on the remineralization of enamel single sections assessed by microradiography and confocal laser scanning microscopy. Caries Res 32(5):393–400CrossRefGoogle Scholar
  61. 61.
    Suga S (1989) Enamel hypomineralization viewed from the pattern of progressive mineralization of human and monkey developing enamel. Adv Dent Res 3(2):188–198Google Scholar
  62. 62.
    Robinson C, Kirkham J, Brookes S, Shore R (1992) The role of albumin in developing rodent dental enamel: a possible explanation for white spot hypoplasia. J Dent Res 71(6):1270–1274CrossRefGoogle Scholar
  63. 63.
    Robinson C, Brookes S, Kirkham J, Bonass W, Shore R (1996) Crystal growth in dental enamel: the role of amelogenins and albumin. Adv Dent Res 10(2):173–180CrossRefGoogle Scholar
  64. 64.
    Yanagisawa T, Miake Y (2003) High-resolution electron microscopy of enamel-crystal demineralization and remineralization in carious lesions. J Electron Microsc 52(6):605–613CrossRefGoogle Scholar
  65. 65.
    Menanteau J, Gregoire M, Daculsi G, Jans I (1987) In vitro albumin binding on apatite crystals from developing enamel. Bone Miner 3(2):137–141Google Scholar
  66. 66.
    Garnett J, Dieppe P (1990) The effects of serum and human albumin on calcium hydroxyapatite crystal growth. Biochem J 266:863–868Google Scholar
  67. 67.
    Paris S, Meyer-Lueckel H, Colfen H, Kielbassa AM (2007) Resin infiltration of artificial enamel caries lesions with experimental light curing resins. Dent Mater J 26(4):582–588CrossRefGoogle Scholar
  68. 68.
    Shin W, Li X, Schwartz B, Wunder S, Baran G (1993) Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy. Dent Mater 9(5):317–324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Arun K. Natarajan
    • 1
  • Sara J. Fraser
    • 3
    • 4
  • Michael V. Swain
    • 2
  • Bernadette K. Drummond
    • 1
  • Keith C. Gordon
    • 3
  1. 1.Department of Oral Sciences, Faculty of DentistryUniversity of OtagoDunedinNew Zealand
  2. 2.Biomaterials Science Research Unit, Faculty of DentistryUniversity of Sydney, Sydney Dental HospitalSurry HillsAustralia
  3. 3.MacDiarmid Institute of Advanced Materials and Nanotechnology, Department of ChemistryUniversity of OtagoDunedinNew Zealand
  4. 4.Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of HelsinkiHelsinkiFinland

Personalised recommendations