Analytical and Bioanalytical Chemistry

, Volume 407, Issue 18, pp 5381–5392 | Cite as

Human sweat metabolomics for lung cancer screening

  • Mónica Calderón-Santiago
  • Feliciano Priego-CapoteEmail author
  • Natacha Turck
  • Xavier Robin
  • Bernabé Jurado-Gámez
  • Jean C. Sanchez
  • María D. Luque de CastroEmail author
Research Paper


Sweat is one of the less employed biofluids for discovery of markers in spite of its increased application in medicine for detection of drugs or for diagnostic of cystic fibrosis. In this research, human sweat was used as clinical sample to develop a screening tool for lung cancer, which is the carcinogenic disease with the highest mortality rate owing to the advanced stage at which it is usually detected. In this context, a method based on the metabolite analysis of sweat to discriminate between patients with lung cancer versus smokers as control individuals is proposed. The capability of the metabolites identified in sweat to discriminate between both groups of individuals was studied and, among them, a trisaccharide phosphate presented the best independent performance in terms of the specificity/sensitivity pair (80 and 72.7 %, respectively). Additionally, two panels of metabolites were configured using the PanelomiX tool as an attempt to reduce false negatives (at least 80 % specificity) and false positives (at least 80 % sensitivity). The first panel (80 % specificity and 69 % sensitivity) was composed by suberic acid, a tetrahexose, and a trihexose, while the second panel (69 % specificity and 80 % sensitivity) included nonanedioic acid, a trihexose, and the monoglyceride MG(22:2). Thus, the combination of the five metabolites led to a single panel providing 80 % specificity and 79 % sensitivity, reducing the false positive and negative rates to almost 20 %. The method was validated by estimation of within-day and between-days variability of the quantitative analysis of the five metabolites.

Graphical Abstract

Sweat analysis for screening of lung cancer


Metabolomics Lung cancer Human sweat LC–QTOF Biomarker panel Mass spectrometry 



The Spanish Ministerio de Economía y Competitividad (MINECO) and the FEDER Program (project no. CTQ2012-37428), and the Junta de Andalucía through an Excellence project (FQM-1602) are gratefully acknowledged for financial support. F. Priego-Capote is also grateful to the Ministerio de Ciencia e Innovación (MICINN) for a Ramón y Cajal Contract (RYC-2009-03921). M. Calderón-Santiago also thanks the MICINN for an FPU scholarship (AP2009-0499). The Reina Sofía Hospital (Córdoba, Spain) is also grateful to donors of sweat samples.

Contribution to the overall work

M. Calderón-Santiago, F. Priego-Capote, and M. D. Luque de Castro developed and applied the method, and organized and wrote the manuscript.

B. Jurado-Gámez provided the samples and participated in the discussion of the manuscript.

N. Turck, X. Robin, and J.C. Sanchez contributed with the development of panels and participated in the discussion of the manuscript.

Supplementary material

216_2015_8700_MOESM1_ESM.pdf (335 kb)
ESM 1 (PDF 335 kb)


  1. 1.
    Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD (2010) Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. TrAC Trends Anal Chem 29:111–119. doi: 10.1016/j.trac.2009.12.003 CrossRefGoogle Scholar
  2. 2.
    Mena-Bravo A, Luque de Castro MD (2014) Sweat: a sample with limited present applications and promising future in metabolomics. J Pharm Biomed Anal 90:139–147. doi: 10.1016/j.jpba.2013.10.048 CrossRefGoogle Scholar
  3. 3.
    Lynch A (2010) Thesis: Development and characterisation of solid-state ion-selective electrodes, and their application to sweat analysis for cystic fibrosis diagnosis. The Centre for Sensor Web Technologies, Dublin City UniversityGoogle Scholar
  4. 4.
    Kirk JM, Keston M, McIntosh I, al Essa S (1992) Variation of sweat sodium and chloride with age in cystic fibrosis and normal populations: further investigations in equivocal cases. Ann Clin Biochem 29:145–152. doi: 10.1177/000456329202900204 CrossRefGoogle Scholar
  5. 5.
    Gibson LE, Cooke RE (1959) A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 23:545–549Google Scholar
  6. 6.
    De Giovanni N, Fucci N (2013) The current status of sweat testing for drugs of abuse: a review. Curr Med Chem 20:545–561Google Scholar
  7. 7.
    Kintz P, Tracqui A, Mangin P, Edel Y (1996) Sweat testing in opioid users with a sweat patch. J Anal Toxicol 20:393–397CrossRefGoogle Scholar
  8. 8.
    Uemura N, Nath RP, Harkey MR et al (2004) Cocaine levels in sweat collection patches vary by location of patch placement and decline over time. J Anal Toxicol 28:253–259CrossRefGoogle Scholar
  9. 9.
    Sears ME, Kerr KJ, Bray RI (2012) Arsenic, cadmium, lead, and mercury in sweat: a systematic review. J Environ Public Health 2012:184745. doi: 10.1155/2012/184745 Google Scholar
  10. 10.
    Taylor JR, Watson ID, Tames FJ, Lowe D (1998) Detection of drug use in a methadone maintenance clinic: sweat patches versus urine testing. Addiction 93:847–853CrossRefGoogle Scholar
  11. 11.
    Lee NVL, Miller PW, Buono MJ (2010) The effect of spironolactone on sweat and urinary sodium excretion during exercise in humans. Clin Physiol Funct Imaging 30:13–16. doi: 10.1111/j.1475-097X.2009.00898.x CrossRefGoogle Scholar
  12. 12.
    Hew-Butler T, Noakes TD, Soldin SJ, Verbalis JG (2010) Acute changes in arginine vasopressin, sweat, urine and serum sodium concentrations in exercising humans: does a coordinated homeostatic relationship exist? Br J Sports Med 44:710–715. doi: 10.1136/bjsm.2008.051771 CrossRefGoogle Scholar
  13. 13.
    Kutyshenko VP, Molchanov M, Beskaravayny P et al (2011) Analyzing and mapping sweat metabolomics by high-resolution NMR spectroscopy. PLoS ONE. doi: 10.1371/journal.pone.0028824 Google Scholar
  14. 14.
    Calderón-Santiago M, Priego-Capote F, Jurado-Gámez B, Luque de Castro MD (2014) Optimization study for metabolomics analysis of human sweat by liquid chromatography-tandem mass spectrometry in high resolution mode. J Chromatogr A 1333:70–78. doi: 10.1016/j.chroma.2014.01.071 CrossRefGoogle Scholar
  15. 15.
    Ehmann R, Boedeker E, Friedrich U et al (2012) Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J 39:669–676. doi: 10.1183/09031936.00051711 CrossRefGoogle Scholar
  16. 16.
    World Health Organization (2012) WHO Cancer. Cancer fact sheet No. 297Google Scholar
  17. 17.
    Howlader N, Noone AM, Krapcho M, et al (2013) SEER Cancer Statistics Review, 1975–2010,. Natl. Cancer Institute. Bethesda, MD, http//, based Novemb. 2012 SEER data submission, posted to SEER web site, April 2013Google Scholar
  18. 18.
    Wegwarth O, Schwartz LM, Woloshin S et al (2012) Do physicians understand cancer screening statistics? A national survey of primary care physicians in the United States. Ann Intern Med 156:340–349. doi: 10.7326/0003-4819-156-5-201203060-00005 CrossRefGoogle Scholar
  19. 19.
    Aberle DR, Adams AM, Berg CD et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409. doi: 10.1056/NEJMoa1102873 CrossRefGoogle Scholar
  20. 20.
    Khadir A, Tiss A (2013) Proteomics approaches towards early detection and diagnosis of cancer. J Carcinog Mutagen S14:2Google Scholar
  21. 21.
    Xiao H, Zhang L, Zhou H et al (2012) Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol Cell Proteomics 11:1–12. doi: 10.1074/mcp.M111.012112 CrossRefGoogle Scholar
  22. 22.
    Fan TWM, Lane AN, Higashi RM et al (2009) Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer. doi: 10.1186/1476-4598-8-41 Google Scholar
  23. 23.
    Beane J, Vick J, Schembri F et al (2011) Characterizing the impact of smoking and lung cancer on the airway transcriptome using RNA-Seq. Cancer Prev Res 4:803–817. doi: 10.1158/1940-6207.CAPR-11-0212 CrossRefGoogle Scholar
  24. 24.
    Girard L, Zöchbauer-Müller S, Virmani AK et al (2000) Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 60:4894–4906Google Scholar
  25. 25.
    Pleasance ED, Stephens PJ, O’Meara S et al (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184–190. doi: 10.1038/nature08629 CrossRefGoogle Scholar
  26. 26.
    Beger R (2013) A review of applications of metabolomics in cancer. Metabolites 3:552–574. doi: 10.3390/metabo3030552 CrossRefGoogle Scholar
  27. 27.
    Kami K, Fujimori T, Sato H et al (2013) Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry. Metabolomics 9:444–453. doi: 10.1007/s11306-012-0452-2 CrossRefGoogle Scholar
  28. 28.
    Carrola J, Rocha CM, Barros AS et al (2011) Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res 10:221–230. doi: 10.1021/pr100899x CrossRefGoogle Scholar
  29. 29.
    Jentzmik F, Stephan C, Miller K et al (2010) Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur Urol 58:12–18. doi: 10.1016/j.eururo.2010.01.035 CrossRefGoogle Scholar
  30. 30.
    Karlsson M, Mårild S, Brandberg J et al (2006) Serum phospholipid fatty acids, adipose tissue, and metabolic markers in obese adolescents. Obesity 14:1931–1939. doi: 10.1038/oby.2006.225 CrossRefGoogle Scholar
  31. 31.
    Sánchez de Cos J, Hernández JH, López MFJ et al (2011) SEPAR guidelines for lung cancer staging. Arch Bronconeumol 47:454–465. doi: 10.1016/j.arbres.2011.06.013 CrossRefGoogle Scholar
  32. 32.
    Robin X, Turck N, Hainard A et al (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77–84. doi: 10.1186/1471-2105-12-77 CrossRefGoogle Scholar
  33. 33.
    Robin X, Turck N, Hainard A et al (2013) PanelomiX: a threshold-based algorithm to create panels of biomarkers. Translant Proteomics 1:57–64. doi: 10.1016/j.trprot.2013.04.003 CrossRefGoogle Scholar
  34. 34.
    Xia J, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9:280–299. doi: 10.1007/s11306-012-0482-9 CrossRefGoogle Scholar
  35. 35.
    Kim K-R, Park H-G, Paik M-J, Kim K-R, Park H-G, Paik M-J et al (1998) Gas chromatographic profiling and pattern recognition analysis of urinary organic acids from uterine myoma patients and cervical cancer patients. J Chromatogr B Biomed Sci Appl 712:11–22. doi: 10.1016/S0378-4347(98)00155-8 CrossRefGoogle Scholar
  36. 36.
    Simonsen N, van’t Veer P, Strain JJ et al (1998) Adipose tissue omega-3 and omega-6 fatty acid content and breast cancer in the EURAMIC study. Am J Epidemiol 147:342–352. doi: 10.1093/oxfordjournals.aje.a009456 CrossRefGoogle Scholar
  37. 37.
    Simopoulos A (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379. doi: 10.1016/S0753-3322(02)00253-6 CrossRefGoogle Scholar
  38. 38.
    Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688. doi: 10.3181/0711-MR-311 CrossRefGoogle Scholar
  39. 39.
    Takeuchi T, Fujiki H, Kameya T (1981) Characterization of amylases produced by tumors. Clin Chem 27:556–559Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mónica Calderón-Santiago
    • 1
    • 2
  • Feliciano Priego-Capote
    • 1
    • 2
    Email author
  • Natacha Turck
    • 3
  • Xavier Robin
    • 3
  • Bernabé Jurado-Gámez
    • 2
    • 4
  • Jean C. Sanchez
    • 3
  • María D. Luque de Castro
    • 1
    • 2
    Email author
  1. 1.Department of Analytical Chemistry, Annex Marie Curie Building, Campus of RabanalesUniversity of CórdobaCórdobaSpain
  2. 2.Institute of Biomedical Research Maimónides (IMIBIC), Reina Sofía HospitalUniversity of CórdobaCórdobaSpain
  3. 3.Translational Biomarker Group (TBG), Department of Human Protein Sciences, University Medical CentreUniversity of GenevaGenevaSwitzerland
  4. 4.Department of Respiratory MedicineReina Sofía University HospitalCórdobaSpain

Personalised recommendations