Analytical and Bioanalytical Chemistry

, Volume 407, Issue 18, pp 5343–5351 | Cite as

Identification of known drugs targeting the endoplasmic reticulum stress response

  • Kun Bi
  • Kana Nishihara
  • Thomas Machleidt
  • Spencer Hermanson
  • Jun Wang
  • Srilatha Sakamuru
  • Ruili Huang
  • Menghang XiaEmail author
Research Paper


The endoplasmic reticulum (ER), a multifunctional organelle, plays a central role in cellular signaling, development, and stress response. Dysregulation of ER homeostasis has been associated with human diseases, such as cancer, inflammation, and diabetes. A broad spectrum of stressful stimuli including hypoxia as well as a variety of pharmacological agents can lead to the ER stress response. In this study, we have developed a stable ER stress reporter cell line that stably expresses a β-lactamase reporter gene under the control of the ER stress response element (ESRE) present in the glucose-regulated protein, 78 kDa (GRP78) gene promoter. This assay has been optimized and miniaturized into a 1536-well plate format. In order to identify clinically used drugs that induce ER stress response, we screened approximately 2800 drugs from the NIH Chemical Genomics Center Pharmaceutical Collection (NPC library) using a quantitative high-throughput screening (qHTS) platform. From this study, we have identified several known ER stress inducers, such as 17-AAG (via HSP90 inhibition), as well as several novel ER stress inducers such as AMI-193 and spiperone. The confirmed drugs were further studied for their effects on the phosphorylation of eukaryotic initiation factor 2α (eIF2α), the X-box-binding protein (XBP1) splicing, and GRP78 gene expression. These results suggest that the ER stress inducers identified from the NPC library using the qHTS approach could shed new lights on the potential therapeutic targets of these drugs.


ATF6 ER stress pathways NPC library qHTS XBP1 



We thank Sam Michael and Paul Shinn for assistance with automated screening and compound management. These studies were supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health.


  1. 1.
    Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454(7203):455–462. doi: 10.1038/nature07203 CrossRefGoogle Scholar
  2. 2.
    Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7(12):1013–1030CrossRefGoogle Scholar
  3. 3.
    Ozcan L, Tabas I (2012) Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 63:317–328CrossRefGoogle Scholar
  4. 4.
    Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102Google Scholar
  5. 5.
    Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194. doi: 10.1146/annurev-pathol-012513-104649 CrossRefGoogle Scholar
  6. 6.
    Dufey E, Sepulveda D, Rojas-Rivera D, Hetz C (2014) Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview. Am J Physiol Cell Physiol 307(7):C582–594. doi: 10.1152/ajpcell.00258.2014 CrossRefGoogle Scholar
  7. 7.
    Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci U S A 100(17):9946–9951CrossRefGoogle Scholar
  8. 8.
    Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307(5711):935–939. doi: 10.1126/science.1101902 CrossRefGoogle Scholar
  9. 9.
    Rahmani M, Davis EM, Crabtree TR, Habibi JR, Nguyen TK, Dent P, Grant S (2007) The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol 27(15):5499–5513CrossRefGoogle Scholar
  10. 10.
    Huang R, Southall N, Wang Y, Yasgar A, Shinn P, Jadhav A, Nguyen DT, Austin CP (2011) The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med 3(80):80ps16. doi: 10.1126/scitranslmed.3001862 CrossRefGoogle Scholar
  11. 11.
    Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, Shinn P, Van Leer D, Leister W, Austin CP, Xia M (2010) Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol 79(9):1272–1280. doi: 10.1016/j.bcp.2009.12.021 CrossRefGoogle Scholar
  12. 12.
    Zlokarnik G, Negulescu PA, Knapp TE, Mere L, Burres N, Feng L, Whitney M, Roemer K, Tsien RY (1998) Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279(5347):84–88CrossRefGoogle Scholar
  13. 13.
    Xia M, Huang R, Guo V, Southall N, Cho MH, Inglese J, Austin CP, Nirenberg M (2009) Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory. Proc Natl Acad Sci U S A 106(7):2412–2417CrossRefGoogle Scholar
  14. 14.
    Huang R, Sakamuru S, Martin MT, Reif DM, Judson RS, Houck KA, Casey W, Hsieh JH, Shockley KR, Ceger P, Fostel J, Witt KL, Tong W, Rotroff DM, Zhao T, Shinn P, Simeonov A, Dix DJ, Austin CP, Kavlock RJ, Tice RR, Xia M (2014) Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci Rep 4:5664. doi: 10.1038/srep05664 Google Scholar
  15. 15.
    Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, Zheng W, Austin CP (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci U S A 103(31):11473–11478. doi: 10.1073/pnas.0604348103 CrossRefGoogle Scholar
  16. 16.
    Robers MB, Horton RA, Bercher MR, Vogel KW, Machleidt T (2008) High-throughput cellular assays for regulated posttranslational modifications. Anal Biochem 372(2):189–197. doi: 10.1016/j.ab.2007.09.012 CrossRefGoogle Scholar
  17. 17.
    Davenport EL, Moore HE, Dunlop AS, Sharp SY, Workman P, Morgan GJ, Davies FE (2007) Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood 110(7):2641–2649. doi: 10.1182/blood-2006-11-053728 CrossRefGoogle Scholar
  18. 18.
    Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107(12):4907–4916. doi: 10.1182/blood-2005-08-3531 CrossRefGoogle Scholar
  19. 19.
    Sarro E, Jacobs-Cacha C, Itarte E, Meseguer A (2012) A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells. Toxicol Appl Pharmacol 258(2):275–287CrossRefGoogle Scholar
  20. 20.
    Ciechomska IA, Kaminska B (2012) ER stress and autophagy contribute to CsA-induced death of malignant glioma cells. Autophagy 8(10)Google Scholar
  21. 21.
    Hansen HC, Olsson R, Croston G, Andersson CM (2000) Multistep solution-phase parallel synthesis of spiperone analogues. Bioorg Med Chem Lett 10(21):2435–2439CrossRefGoogle Scholar
  22. 22.
    Neutel JM, Smith DH (2013) Hypertension management: rationale for triple therapy based on mechanisms of action. Cardiovasc Ther 31(5):251–258. doi: 10.1111/1755-5922.12015 CrossRefGoogle Scholar
  23. 23.
    Grunder G, Wetzel H, Hammes E, Benkert O (1993) Roxindole, a dopamine autoreceptor agonist, in the treatment of major depression. Psychopharmacology (Berlin) 111(1):123–126CrossRefGoogle Scholar
  24. 24.
    Basso LG, Rodrigues RZ, Naal RM, Costa-Filho AJ (2011) Effects of the antimalarial drug primaquine on the dynamic structure of lipid model membranes. Biochim Biophys Acta 1808(1):55–64. doi: 10.1016/j.bbamem.2010.08.009 CrossRefGoogle Scholar
  25. 25.
    Nelson JA, Carpenter JW, Rose LM, Adamson DJ (1975) Mechanisms of action of 6-thioguanine, 6-mercaptopurine, and 8-azaguanine. Cancer Res 35(10):2872–2878Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kun Bi
    • 1
  • Kana Nishihara
    • 2
    • 3
  • Thomas Machleidt
    • 4
  • Spencer Hermanson
    • 4
  • Jun Wang
    • 4
  • Srilatha Sakamuru
    • 2
  • Ruili Huang
    • 2
  • Menghang Xia
    • 2
    Email author
  1. 1.Life Science Solutions GroupThermo Fisher ScientificRockfordUSA
  2. 2.National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaUSA
  3. 3.Radiation Genetics, Graduate School of MedicineKyoto UniversityKyotoJapan
  4. 4.Promega CorporationFitchburgUSA

Personalised recommendations