Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 18, pp 5309–5321 | Cite as

Analysis of glipizide binding to normal and glycated human serum albumin by high-performance affinity chromatography

  • Ryan Matsuda
  • Zhao Li
  • Xiwei Zheng
  • David S. HageEmail author
Research Paper

Abstract

In diabetes, the elevated levels of glucose in the bloodstream can result in the nonenzymatic glycation of proteins such as human serum albumin (HSA). This type of modification has been shown to affect the interactions of some drugs with HSA, including several sulfonylurea drugs that are used to treat type II diabetes. This study used high-performance affinity chromatography (HPAC) to examine the interactions of glipizide (i.e., a second-generation sulfonylurea drug) with normal HSA or HSA that contained various levels of in vitro glycation. Frontal analysis indicated that glipizide was interacting with both normal and glycated HSA through two general groups of sites: a set of relatively strong interactions and a set of weaker interactions with average association equilibrium constants at pH 7.4 and 37 °C in the range of 2.4–6.0 × 105 and 1.7–3.7 × 104 M−1, respectively. Zonal elution competition studies revealed that glipizide was interacting at both Sudlow sites I and II, which were estimated to have affinities of 3.2–3.9 × 105 and 1.1–1.4 × 104 M−1. Allosteric effects were also noted to occur for this drug between the tamoxifen site and the binding of R-warfarin at Sudlow site I. Up to an 18 % decrease in the affinity for glipizide was observed at Sudlow site I ongoing from normal HSA to glycated HSA, while up to a 27 % increase was noted at Sudlow site II. This information should be useful in indicating how HPAC can be used to investigate other drugs that have complex interactions with proteins. These results should also be valuable in providing a better understanding of how glycation may affect drug-protein interactions and the serum transport of drugs such as glipizide during diabetes.

Keywords

Glipizide Human serum albumin Glycation High-performance affinity chromatography Drug-protein binding 

Notes

Acknowledgments

This work was funded by the NIH under grant R01 DK069629. R. Matsuda was supported under a fellowship through the Molecular Mechanisms of Disease program at the University of Nebraska.

Supplementary material

216_2015_8688_MOESM1_ESM.pdf (278 kb)
ESM 1 (PDF 278 kb)

References

  1. 1.
    Centers for Disease Control and Prevention (2011) National diabetes fact sheet, 2011. Centers for Disease Control and Prevention, AtlantaGoogle Scholar
  2. 2.
    International Diabetes Federation (2011) IDF diabetes atlas, 5th edn. International Diabetes Federation, Brussels, chap 2 Google Scholar
  3. 3.
    Mendez DL, Jensen RA, McElroy LA, Pena JM, Esquerra RM (2005) Arch Biochem Biophys 444:92–99CrossRefGoogle Scholar
  4. 4.
    Colmenarejo G (2003) Med Res Rev 23:275–301CrossRefGoogle Scholar
  5. 5.
    Koyama H, Sugioka N, Uno A, Mori S, Nakajima K (1997) Biopharm Drug Dispos 18:791–801CrossRefGoogle Scholar
  6. 6.
    Garlick RL, Mazer JS (1983) J Biol Chem 258:6142–6146Google Scholar
  7. 7.
    Iberg N, Fluckiger R (1986) J Biol Chem 261:13542–13545Google Scholar
  8. 8.
    Nakajou K, Watanabe H, Kragh-Hansen U, Maruyama T, Otagiri M (2003) Biochim Biophys Acta 1623:88–97CrossRefGoogle Scholar
  9. 9.
    Furusyo N, Hayashi J (2013) Biochim Biophys Acta 1830:5509–5514CrossRefGoogle Scholar
  10. 10.
    Anguizola J, Matsuda R, Barnaby OS, Joseph KS, Wa C, Debolt E, Koke M, Hage DS (2013) Clin Chim Acta 425:64–76CrossRefGoogle Scholar
  11. 11.
    Roohk HV, Zaidi AR (2008) J Diabetes Sci Technol 2:1114–1121CrossRefGoogle Scholar
  12. 12.
    Peters T Jr (1996) All about albumin: biochemistry, genetics and medical applications. Academic, San DiegoGoogle Scholar
  13. 13.
    Clinical Guide to Laboratory Tests (1990) Tietz NW (ed) 2nd edn. Saunders, PhiladelphiaGoogle Scholar
  14. 14.
    Otagiri M (2005) Drug Metab Pharmacokinet 20:309–323CrossRefGoogle Scholar
  15. 15.
    Curry S, Mandelkow H, Brick P, Franks N (1998) Nat Struct Biol 5:827–835CrossRefGoogle Scholar
  16. 16.
    Ascoli GA, Domenici E, Bertucci C (2006) Chirality 18:667–679CrossRefGoogle Scholar
  17. 17.
    Simard JR, Zunszain PA, Ha CE, Yang JS, Bhagavan NV, Petitpas I, Curry S, Hamilton JA (2005) Proc Natl Acad Sci U S A 102:17958–17963CrossRefGoogle Scholar
  18. 18.
    Sudlow G, Birkett J, Wade DN (1975) Mol Pharmacol 11:824–832Google Scholar
  19. 19.
    Sudlow G, Birkett J, Wade DN (1976) Mol Pharmacol 12:1052–1061Google Scholar
  20. 20.
    Loun B, Hage DS (1994) Anal Chem 66:3814–3822CrossRefGoogle Scholar
  21. 21.
    Yang J, Hage DS (1993) J Chromatogr 645:241–250CrossRefGoogle Scholar
  22. 22.
    Sengupta A, Hage DS (1999) J Chromatogr B 725:91–100CrossRefGoogle Scholar
  23. 23.
    Hage DS, Sengupta A (1998) Anal Chem 70:4602–4609CrossRefGoogle Scholar
  24. 24.
    Chen J, Hage DS (2006) Anal Chem 78:2672–2683CrossRefGoogle Scholar
  25. 25.
    Jakoby MG, Covey DF, Cistola DP (1995) Biochemistry 34:8780–8787CrossRefGoogle Scholar
  26. 26.
    Joseph KS, Hage DS (2010) J Chromatogr B 878:1590–1598CrossRefGoogle Scholar
  27. 27.
    Joseph KS, Anguizola J, Jackson AJ, Hage DS (2010) J Chromatogr B 878:2775–2781CrossRefGoogle Scholar
  28. 28.
    Joseph KS, Anguizola J, Hage DS (2011) J Pharm Biomed Anal 54:426–432CrossRefGoogle Scholar
  29. 29.
    Joseph KS, Hage DS (2010) J Pharm Biomed Anal 53:811–818CrossRefGoogle Scholar
  30. 30.
    Matsuda R, Anguizola J, Joseph KS, Hage DS (2011) Anal Bioanal Chem 401:2811–2819CrossRefGoogle Scholar
  31. 31.
    Matsuda R, Anguizola J, Joseph KS, Hage DS (2012) J Chromatogr A 1265:114–122CrossRefGoogle Scholar
  32. 32.
    Anguizola J, Joseph KS, Barnaby OS, Matsuda R, Alvarado G, Clarke W, Cerny RL, Hage DS (2013) Anal Chem 85:4453–4460CrossRefGoogle Scholar
  33. 33.
    Jackson AJ, Anguizola J, Pfaunmiller EL, Hage DS (2013) Anal Bioanal Chem 405:5833–5841CrossRefGoogle Scholar
  34. 34.
    Seeder N, Kanojia M (2009) Cent Eur J Chem 7:96–104CrossRefGoogle Scholar
  35. 35.
    Melander A (2004) Diabetes 53:S151–S155CrossRefGoogle Scholar
  36. 36.
    Tan Z, Zhang J, Wu J, Fang L, He Z (2009) AAPS PharmSciTech 10:967–976CrossRefGoogle Scholar
  37. 37.
    Hansch C, Leo A, Hoekman D (1995) Exploring QSAR—hydrophobic, electronic, and steric constants. American Chemical Society, WashingtonGoogle Scholar
  38. 38.
    Wishart DS, Knox C, Guo A, Cheng D, Shrivastava S, Tzur D, Gautum B, Hassanali M (2008) Nucleic Acid Res 36:D901–D906CrossRefGoogle Scholar
  39. 39.
    Hage DS (2002) J Chromatogr B 768:3–30CrossRefGoogle Scholar
  40. 40.
    Patel S, Wainer IW, Lough WJ (2006) In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Boca Raton, CRC, chap 24 Google Scholar
  41. 41.
    Hage DS, Anguizola J, Barnaby O, Jackson A, Yoo MJ, Papastavros E, Pfaunmiller E, Sobansky M, Tong Z (2011) Curr Drug Metab 12:313–328CrossRefGoogle Scholar
  42. 42.
    Lapolla A, Fedele D, Reitano R, Arico NC, Seraglia R, Traldi P, Marotta E, Tonani R (2004) J Am Soc Mass Spectrom 15:496–509CrossRefGoogle Scholar
  43. 43.
    Ney KA, Colley KJ, Pizzo SV (1981) Anal Biochem 118:294–300CrossRefGoogle Scholar
  44. 44.
    Pfaunmiller E, Moser AC, Hage DS (2012) Methods 56:130–135CrossRefGoogle Scholar
  45. 45.
    Walters RR (1982) J Chromatogr A 249:19–28CrossRefGoogle Scholar
  46. 46.
    Larson PO (1984) Methods Enzymol 104:212–223Google Scholar
  47. 47.
    Kim HS, Hage DS (2006) In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Boca Raton, CRC, chap 3 Google Scholar
  48. 48.
    Wa C, Cerny RL, Hage DS (2006) Anal Chem 78:7967–7977CrossRefGoogle Scholar
  49. 49.
    Joseph KS, Moser AC, Basiaga S, Schiel JE, Hage DS (2009) J Chromatogr A 1216:3492–3500CrossRefGoogle Scholar
  50. 50.
    Yalkowsky SH, Dannenfelser RM (1992) Aquasol database of aqueous solubility, ver 5. University of Arizona, TusconGoogle Scholar
  51. 51.
    Teko IV, Thanchuk VY, Kasheva TN, Villa AE (2001) J Chem Inf Comput Sci 41:1488–1493CrossRefGoogle Scholar
  52. 52.
    Matsuda R, Anguizola J, Hoy KS, Hage DS (2014) Methods 1286:255–277Google Scholar
  53. 53.
    Conrad ML, Moser AC, Hage DS (2009) J Sep Sci 32:1145–1155CrossRefGoogle Scholar
  54. 54.
    Jamzad S, Rassihi R (2006) AAPS PharmSciTech 7:E17–E22CrossRefGoogle Scholar
  55. 55.
    Schiel JE, Joseph KS, Hage DS (2010) Biointeraction affinity chromatography. In: Grinsberg N, Grushka E (eds) Advances in chromatography. Taylor & Francis, New York, chap 4 Google Scholar
  56. 56.
    Tweed SA (1997) Effects of heterogeneity on the characterization of chromatographic stationary phases. Ph.D. dissertation, University of Nebraska, LincolnGoogle Scholar
  57. 57.
    Crooks MJ, Brown KF (1974) J Pharm Pharmacol 26:304–311CrossRefGoogle Scholar
  58. 58.
    Barnaby OS, Cerny RL, Clarke W, Hage DS (2011) Clin Chim Acta 412:277–285CrossRefGoogle Scholar
  59. 59.
    Barnaby OS, Cerny RL, Clarke W, Hage DS (2011) Clin Chim Acta 412:1606–1615CrossRefGoogle Scholar
  60. 60.
    Sjoholm I (1986) In: Reindenberg MM, Erill S (eds) Drug-protein binding. Praeger, New York, chap 4 Google Scholar
  61. 61.
    Sengupta A, Hage DS (1999) Anal Chem 17:3821–3827CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ryan Matsuda
    • 1
  • Zhao Li
    • 1
  • Xiwei Zheng
    • 1
  • David S. Hage
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations