Analytical and Bioanalytical Chemistry

, Volume 407, Issue 16, pp 4805–4814 | Cite as

New environmentally friendly MSPD solid support based on golden mussel shell: characterization and application for extraction of organic contaminants from mussel tissue

  • Caroline Rombaldi
  • Jean Lucas de Oliveira Arias
  • Gabriel Ianzer Hertzog
  • Sergiane Souza Caldas
  • João P. Vieira
  • Ednei Gilberto Primel
Research Paper


The use of golden mussel shells as a solid support in vortex-assisted matrix solid-phase dispersion (MSPD) was evaluated for the first time for extraction of residues of 11 pesticides and nine pharmaceutical and personal care products from mussel tissue samples. After they had been washed, dried, and milled, the mussel shells were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, and Brunauer—Emmett–Teller analysis. The MSPD procedure with analysis by liquid chromatography–tandem mass spectrometry allowed the determination of target analytes at trace concentrations (nanograms per gram), with mean recoveries ranging from 61 to 107 % and relative standard deviations lower than 18 %. The optimized method consisted of dispersion of 0.5 g of mussel tissue, 0.5 g of NaSO4, and 0.5 g of golden mussel shell for 5 min, and subsequent extraction with 5 mL of ethyl acetate. The matrix effect was evaluated, and a low effect was found for all compounds. The results showed that mussel shell is an effective material and a less expensive material than materials that have traditionally been used, i.e., it may be used in the MSPD dispersion step during the extraction of pesticides and pharmaceutical and personal care products from golden mussel tissues.

Graphical Abstract

Vortex-assited matrix solid-phase dispersion for extraction of 11 pesticides and 9 PPCPs care products from mussel tissue samples


Vortex-assisted matrix solid-phase dispersion Mussel shell Solid support Pesticides Pharmaceutical and personal care products 



The authors acknowledge the financial support and fellowships granted by the Brazilian agencies CAPES, FINEP, CNPq, and FURG. Part of this study was supported by a grant from the Brazilian agencies CNPq/CAPES (process number 552318/2011-6), FAPERGS (process numbers 810-25.51/13-3 and 831-25.51/13-0), and FCT/CAPES (process number 336/13). E.G.P. received a productivity research fellowship from CNPq (DT 310517/2012-5) and J.P.V. received a fellowship from CNPq (309575/2013-3). The authors thank the Electron Microscopy Center (CEME-Sul) of the Federal University of Rio Grande.


  1. 1.
    Barker SA (2007) Matrix solid phase dispersion (MSPD). J Biochem Biophys Methods 70:151–162CrossRefGoogle Scholar
  2. 2.
    Capriotti AL, Cavaliere C, Laganà A, Piovesana S, Samperi R (2013) Recent trends in matrix solid-phase dispersion. Trends Anal Chem 43:53–66CrossRefGoogle Scholar
  3. 3.
    García-Mayor M, Gallego-Picó A, Garcinuño R, Fernández-Hernando P, Durand-Alegría J (2012) Matrix solid-phase dispersion method for the determination of macrolide antibiotics in sheep’s milk. Food Chem 134:553–558CrossRefGoogle Scholar
  4. 4.
    García de Llasera MP, Reyes-Reyes ML (2009) A validated matrix solid-phase dispersion method for the extraction of organophosphorus pesticides from bovine samples. Food Chem 114:1510–1516CrossRefGoogle Scholar
  5. 5.
    Tsoukali H, Theodoridis G, Raikos N, Grigoratou I (2005) Solid phase microextraction gas chromatographic analysis of organophosphorus pesticides in biological samples. J Chromatogr B 822:194–200CrossRefGoogle Scholar
  6. 6.
    Caldas SS, Bolzan CM, Menezes EJD, Escarrone ALV, Martins CMG, Bianchini A, Primel EG (2013) A vortex-assisted MSPD method for the extraction of pesticide residues from fish liver and crab hepatopancreas with determination by GC–MS. Talanta 112:63–68CrossRefGoogle Scholar
  7. 7.
    Moliner-Martinez Y, Campíns-Falcó P, Molins-Legua C, Segovia-Martínez L, Seco-Torrecillas A (2009) Miniaturized matrix solid phase dispersion procedure and solid phase microextraction for the analysis of organochlorinated pesticides and polybrominated diphenylethers in biota samples by gas chromatography electron capture detection. J Chromatogr A 1216:6741–6745CrossRefGoogle Scholar
  8. 8.
    Chen W-L, Wang G-S, Gwo J-C, Chen C-Y (2012) Ultra-high performance liquid chromatography/tandem mass spectrometry determination of feminizing chemicals in river water, sediment and tissue pretreated using disk-type solid-phase extraction and matrix solid-phase dispersion. Talanta 89:237–245CrossRefGoogle Scholar
  9. 9.
    Caldas SS, Rombaldi C, Cerqueira MBR, Soares BM, Primel EG (2013) Avanços recentes da MSPD para extração de resíduos de agrotóxicos, PPCPs, compostos inorgânicos e organometálicos. Sci Chromatogr 5:190–213CrossRefGoogle Scholar
  10. 10.
    Enríquez-Gabeiras L, Gallego A, Garcinuño RM, Fernández-Hernando P, Durand JS (2012) Interference-free determination of illegal dyes in sauces and condiments by matrix solid phase dispersion (MSPD) and liquid chromatography (HPLC–DAD). Food Chem 135:193–198CrossRefGoogle Scholar
  11. 11.
    Radišić M, Grujić S, Vasiljević T, Laušević M (2009) Determination of selected pesticides in fruit juices by matrix solid-phase dispersion and liquid chromatography–tandem mass spectrometry. Food Chem 113:712–719CrossRefGoogle Scholar
  12. 12.
    Nakamura Filho A, Almeida ACD, Riera HE, Araújo JLF, Gouveia VJP, Carvalho MD, Cardoso AV (2014) Polymorphism of CaCO3 and microstructure of the shell of a Brazilian invasive mollusc (Limnoperna fortunei). Mater Res 17:15–22CrossRefGoogle Scholar
  13. 13.
    Silva D, Debacher NA, de Castilhos Junior AB, Rohers F (2010) Caracterização físico-química e microestrutural de conchas de moluscos bivalves provenientes de cultivos da região litorânea da Ilha de Santa Catarina. Quim Nov. 33:1053–1058CrossRefGoogle Scholar
  14. 14.
    Slimani R, El Ouahabi I, Abidi F, El Haddad M, Regti A, Laamari MR, Antri SE, Lazar S (2014) Calcined eggshells as a new biosorbent to remove basic dye from aqueous solutions: Thermodynamics, kinetics, isotherms and error analysis. J Taiwan Inst Chem Eng 45:1578–1587CrossRefGoogle Scholar
  15. 15.
    Li H-Y, Tan Y-Q, Zhang L, Zhang Y-X, Song Y-H, Ye Y, Xia M-S (2012) Bio-filler from waste shellfish shell: preparation, characterization, and its effect on the mechanical properties on polypropylene composites. J Hazard Mater 217:256–262CrossRefGoogle Scholar
  16. 16.
    Hamester MRR, Balzer PS, Becker D (2012) Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Mater Res 15:204–208CrossRefGoogle Scholar
  17. 17.
    Seco-Reigosa N, Cutillas-Barreiro L, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A (2014) Mixtures including wastes from the mussel shell processing industry: retention of arsenic, chromium and mercury. J Clean Prod 84:680–690CrossRefGoogle Scholar
  18. 18.
    Ricciardi A (1998) Global range expansion of the Asian mussel Limnoperna fortunei (Mytilidae): another fouling threat to freshwater systems. Biofouling 13:97–106CrossRefGoogle Scholar
  19. 19.
    Pastorino G, Darrigran G, Martin S, Lunaschi L (1993) Limnoperna fortunei (Dunker, 1857) (Mytilidae), nuevo bivalvo invasor en aguas del Río de la Plata. Neotropica 39:34Google Scholar
  20. 20.
    Mansur MCD (2012) Moluscos límnicos invasores no Brasil: biologia, prevenção e controle. Redes Alegre, Porto AlegreGoogle Scholar
  21. 21.
    Pereira ÉR, Soares BM, Vieira JP, Mai AC, Picoloto RS, Muller EI, Flores EM, Duarte FA (2012) Assessment of inorganic contaminants in golden mussel (Limnoperna fortunei) in southern Brazil. J Braz Chem Soc 23:846–853CrossRefGoogle Scholar
  22. 22.
    Sánchez-Avila J, Fernandez-Sanjuan M, Vicente J, Lacorte S (2011) Development of a multi-residue method for the determination of organic micropollutants in water, sediment and mussels using gas chromatography–tandem mass spectrometry. J Chromatogr A 1218:6799–6811CrossRefGoogle Scholar
  23. 23.
    Ramu K, Kajiwara N, Isobe T, Takahashi S, Kim E-Y, Min B-Y, We S-U, Tanabe S (2007) Spatial distribution and accumulation of brominated flame retardants, polychlorinated biphenyls and organochlorine pesticides in blue mussels (Mytilus edulis) from coastal waters of Korea. Environ Pollut 148:562–569CrossRefGoogle Scholar
  24. 24.
    Picot Groz M, Martinez Bueno M, Rosain D, Fenet H, Casellas C, Pereira C, Maria V, Bebianno M, Gomez E (2014) Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese coast by QuEChERS extraction and GC–MS/MS. Sci Total Environ 493:162–169CrossRefGoogle Scholar
  25. 25.
    Pensado L, Casais MC, Mejuto MC, Cela R (2005) Application of matrix solid-phase dispersion in the analysis of priority polycyclic aromatic hydrocarbons in fish samples. J Chromatogr A 1077:103–109CrossRefGoogle Scholar
  26. 26.
    Canosa P, Rodríguez I, Rubí E, Ramil M, Cela R (2008) Simplified sample preparation method for triclosan and methyltriclosan determination in biota and foodstuff samples. J Chromatogr A 1188:132–139CrossRefGoogle Scholar
  27. 27.
    García-Rodríguez D, Cela-Torrijos R, Lorenzo-Ferreira RA, Carro-Díaz AM (2012) Analysis of pesticide residues in seaweeds using matrix solid-phase dispersion and gas chromatography–mass spectrometry detection. Food Chem 135:259–267CrossRefGoogle Scholar
  28. 28.
    Namiesnik J, Moncheva S, Park Y-S, Ham K-S, Heo B-G, Tashma Z, Katrich E, Gorinstein S (2008) Concentration of bioactive compounds in mussels Mytilus galloprovincialis as an indicator of pollution. Chemosphere 73:938–944CrossRefGoogle Scholar
  29. 29.
    DrugBank (2013) Accessed Mar 2013
  30. 30.
    Tomlin C (2003) The pesticide manual: a world compendium. British Crop Protection Council, FarnhamGoogle Scholar
  31. 31.
    Islam KN, Bakar MZBA, Noordin MM, Hussein MZB, Rahman NSBA, Ali ME (2011) Characterisation of calcium carbonate and its polymorphs from cockle shells (Anadara granosa). Powder Technol 213:188–191CrossRefGoogle Scholar
  32. 32.
    European Commission Directorate General for Health and Food Safety (2013) Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. SANCO/12571/2013. Accessed 22 Aug 2014
  33. 33.
    Economou A, Botitsi H, Antoniou S, Tsipi D (2009) Determination of multi-class pesticides in wines by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216:5856–5867CrossRefGoogle Scholar
  34. 34.
    Kogure T, Suzuki M, Kim H, Mukai H, Checa AG, Sasaki T, Nagasawa H (2014) Twin density of aragonite in molluscan shells characterized using X-ray diffraction and transmission electron microscopy. J Cryst Growth 397:39–46CrossRefGoogle Scholar
  35. 35.
    Yang W, Kashani N, Li X-W, Zhang G-P, Meyers MA (2011) Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). Mater Sci Eng C 31:724–729CrossRefGoogle Scholar
  36. 36.
    Carmody O, Frost R, Xi Y, Kokot S (2007) Surface characterisation of selected sorbent materials for common hydrocarbon fuels. Surf Sci 601:2066–2076CrossRefGoogle Scholar
  37. 37.
    Gritti F, Guiochon G (2006) Adsorption mechanism in reversed-phase liquid chromatography: effect of the surface coverage of a monomeric C18-silica stationary phase. J Chromatogr A 1115:142–163CrossRefGoogle Scholar
  38. 38.
    El Haddad M, Regti A, Laamari MR, Slimani R, Mamouni R, El Antri S, Lazar S (2014) Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions. J Taiwan Inst Chem Eng 45:533–540CrossRefGoogle Scholar
  39. 39.
    Sakulkhaemaruethai S, Duangduen C, Pivsa-Art W, Pivsa-Art S (2010) Fabrication of composite material from sea mussel shells and white clay as a versatile sorbent. Energy Res J 1:78–81CrossRefGoogle Scholar
  40. 40.
    US Environmental Protection Agency (2014) Ethyl acetate (CASRN 141-78-6).
  41. 41.
    Rodríguez-González N, González-Castro M, Beceiro-González E, Muniategui-Lorenzo S, Prada-Rodríguez D (2014) Determination of triazine herbicides in seaweeds: development of a sample preparation method based on matrix solid phase dispersion and solid phase extraction clean-up. Talanta 121:194–198CrossRefGoogle Scholar
  42. 42.
    Sapozhnikova Y, Lehotay SJ (2013) Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography–tandem mass spectrometry. Anal Chim Acta 758:80–92CrossRefGoogle Scholar
  43. 43.
    Klosterhaus SL, Grace R, Hamilton MC, Yee D (2013) Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary. Environ Int 54:92–99CrossRefGoogle Scholar
  44. 44.
    Dodder NG, Maruya KA, Lee Ferguson P, Grace R, Klosterhaus S, La Guardia MJ, Lauenstein GG, Ramirez J (2014) Occurrence of contaminants of emerging concern in mussels (Mytilus spp.) along the California coast and the influence of land use, storm water discharge, and treated wastewater effluent. Mar Pollut Bull 81:340–346CrossRefGoogle Scholar
  45. 45.
    Lazartigues A, Wiest L, Baudot R, Thomas M, Feidt C, Cren-Olivé C (2011) Multiresidue method to quantify pesticides in fish muscle by QuEChERS-based extraction and LC-MS/MS. Anal Bioanal Chem 400:2185–2193CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Caroline Rombaldi
    • 1
  • Jean Lucas de Oliveira Arias
    • 1
  • Gabriel Ianzer Hertzog
    • 1
  • Sergiane Souza Caldas
    • 1
  • João P. Vieira
    • 2
  • Ednei Gilberto Primel
    • 1
  1. 1.Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM)Universidade Federal do Rio GrandeRio GrandeBrazil
  2. 2.Instituto de OceanografiaUniversidade Federal do Rio GrandeRio GrandeBrazil

Personalised recommendations