Analytical and Bioanalytical Chemistry

, Volume 407, Issue 16, pp 4779–4791 | Cite as

Spatial chemo-profiling of hypericin and related phytochemicals in Hypericum species using MALDI-HRMS imaging

  • Souvik KusariEmail author
  • Selahaddin Sezgin
  • Katarina Nigutova
  • Eva Cellarova
  • Michael SpitellerEmail author
Research Paper
Part of the following topical collections:
  1. Mass Spectrometry Imaging


Advanced analytical imaging techniques, including matrix-assisted laser desorption/ionization high-resolution mass spectrometry (MALDI-HRMS) imaging, can be used to visualize the distribution, localization, and dynamics of target compounds and their precursors with limited sample preparation. Herein we report an application of MALDI-HRMS imaging to map, in high spatial resolution, the accumulation of the medicinally important naphthodianthrone hypericin, its structural analogues and proposed precursors, and other crucial phytochemical constituents in the leaves of two hypericin-containing species, Hypericum perforatum and Hypericum olympicum. We also investigated Hypericum patulum, which does not contain hypericin or its protoforms. We focused on both the secretory (dark glands, translucent glands, secretory canals, laminar glands, and ventral glands) and the surrounding non-secretory tissues to clarify the site of biosynthesis and localization of hypericin, its possible precursors, and patterns of localization of other related compounds concomitant to the presence or absence of hypericin. Hypericin, pseudohypericin, and protohypericin accumulate in the dark glands. However, the precursor emodin not only accumulates in the dark glands but is also present outside the glands in both hypericin-containing species. In hypericin-lacking H. patulum, however, emodin typically accumulates only in the glands, thereby providing evidence that hypericin is possibly biosynthesized outside the dark glands and thereafter stored in them. The distribution and localization of related compounds were also evaluated and are discussed concomitant to the occurrence of hypericin. Our study provides the basis for further detailed investigation of hypericin biosynthesis by gene discovery and expression studies.


High-resolution mass spectrometry Matrix-assisted laser desorption/ionization (MALDI) high-resolution mass spectrometry imaging Hypericum perforatumHypericum olympicumHypericum patulum THUNB Hypericin Biosynthesis Dark glands 



This research was funded in part by the grant project SOFOS-knowledge and skill development of staff and students of P. J. Safarik University in Kosice (contract number: 003/2013/1.2/OPV, ITMS code: 26110230088), funded by the European Social Fund through the Operational Program Education. S.K. was the tutor assigned to supervise and train K.N. within the scope of the SOFOS grant project. We thank the German Research Foundation (DFG) for financing the MALDI imaging high-resolution mass spectrometers and the Scientific Grant Agency of Slovak Republic VEGA 1/0090/15. We gratefully acknowledge Dr S. Zühlke (INFU, TU Dortmund) for valuable discussions, technical assistance, and critically reviewing our manuscript.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

216_2015_8682_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1.35 mb)


  1. 1.
    Kosuth J, Smelcerovic A, Borsch T, Zuehlke S, Karppinen K, Spiteller M, Hohtola A, Cellarova E (2011) The hyp-1 gene is not a limiting factor for hypericin biosynthesis in the genus Hypericum. Funct Plant Biol 38:35–43CrossRefGoogle Scholar
  2. 2.
    Kosuth J, Hrehorova D, Jaskolski M, Cellarova E (2013) Stress-induced expression and structure of the putative gene hyp-1 for hypericin biosynthesis. Plant Cell Tissue Organ Cult 114:207–216CrossRefGoogle Scholar
  3. 3.
    Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162CrossRefGoogle Scholar
  4. 4.
    Kusari S, Zühlke S, Kosuth J, Cellarova E, Spiteller M (2009) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72:1825–1835CrossRefGoogle Scholar
  5. 5.
    Crockett SL, Robson NKB (2011) Taxonomy and chemotaxonomy of the genus Hypericum. Med Aromat Plant Sci Biotechnol 5:1–13Google Scholar
  6. 6.
    Brockmann H, Haschad MN, Maier K, Pohl F (1939) Über das Hypericin, den photodynamisch wirksamen Farbstoff aus Hypericum perforatum. Naturwissenschaften 27:550CrossRefGoogle Scholar
  7. 7.
    Brockmann H, Pohl F, Maier K, Haschad MN (1942) Über das Hypericin, den photodynamischen Farbstoff des Johanniskrautes (Hypericum perforatum). Ann Chem 553:1–52CrossRefGoogle Scholar
  8. 8.
    Brockmann H, Kluge F, Muxfeldt H (1957) Totalsynthese des Hypericins. Chem Ber 90:2302–2318CrossRefGoogle Scholar
  9. 9.
    Nahrstedt A, Butterweck V (1997) Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry 30:129–134CrossRefGoogle Scholar
  10. 10.
    Häberlein H, Tschiersch KP, Stock S, Hölzl J (1992) Johanniskraut (Hypericum perforatum L.): Nachweis eines weiteren Naphthodianthrons. Pharm Ztg Wiss 5(137):169–174Google Scholar
  11. 11.
    Kitanov GM (2001) Hypericin and pseudohypericin in some Hypericum species. Biochem Syst Ecol 29:171–178CrossRefGoogle Scholar
  12. 12.
    Makovetska OY (1999) Research of biologically active substances of Hypericum L. species: report II. Farm Zh (Kiev) 1:47–52Google Scholar
  13. 13.
    Crockett SL, Schaneberg B, Khan IA (2005) Phytochemical profiling of New and Old World Hypericum (St. John's Wort) species. Phytochem Anal 16:479–485CrossRefGoogle Scholar
  14. 14.
    Kirakosyan A, Gibson DM, Kaufman PB (2008) The production of dianthrones and phloroglucinol derivatives in St. John’s Wort. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants. Springer, Berlin, pp 149–164CrossRefGoogle Scholar
  15. 15.
    Brockmann H, Falkenhausen EH, Dorlares A (1950) Die Konstitution des Hypericins. Naturwissenschaften 37:540CrossRefGoogle Scholar
  16. 16.
    Thomson RH (1957) Naturally occurring quinones. Butterworths Scientific Publications, LondonGoogle Scholar
  17. 17.
    Bais HP, Vepachedu R, Lawrence CB, Stermitz FR, Vivanco JM (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). J Biol Chem 278:32413–32422CrossRefGoogle Scholar
  18. 18.
    Kosuth J, Katkovcinova Z, Olexova P, Cellarova E (2007) Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant Cell Rep 26:211–217CrossRefGoogle Scholar
  19. 19.
    Cellarova E, Daxnerova Z, Kimakova K, Haluskova J (1994) The variability of hypericin content in the regenerants of Hypericum perforatum. Acta Biotechnol 14:267–274CrossRefGoogle Scholar
  20. 20.
    Briskin DP, Leroy A, Gawienowski M (2000) Influence of nitrogen on the production of hypericins by St. John’s wort. Plant Physiol Biochem 38:413–420CrossRefGoogle Scholar
  21. 21.
    Onelli E, Rivetta A, Giorgi A, Bignami M, Cocucci M, Patrignani G (2002) Ultrastructural studies on the developing secretory nodules of Hypericum perforatum. Flora 197:92–102CrossRefGoogle Scholar
  22. 22.
    Hölzl J, Petersen M (2003) Chemical constituents of Hypericum ssp. In: Ernst E (ed) Hypericum: the genus Hypericum (series: medicinal and aromatic plants - industrial profiles), vol 31. Taylor and Francis, London, pp 77–93Google Scholar
  23. 23.
    Hadjur C, Richard MJ, Parat MO, Jardon P, Favier A (1996) Photodynamic effects of hypericin on lipid peroxidation and antioxidant status in melanoma cells. Photochem Photobiol 64:375–381CrossRefGoogle Scholar
  24. 24.
    Delaey EM, Obermueller R, Zupko I, De Vos D, Falk H, de Witte PA (2001) In vitro study of the photocytotoxicity of some hypericin analogs on different cell lines. Photochem Photobiol 74:164–171CrossRefGoogle Scholar
  25. 25.
    Kamuhabwa AR, Agostinis PM, D’Hallewin MA, Baert L, de Witte PA (2001) Cellular photodestruction induced by hypericin in AY-27 rat bladder carcinoma cells. Photochem Photobiol 74:126–132CrossRefGoogle Scholar
  26. 26.
    Kubin A, Wierrani F, Burner U, Alth G, Grunberger W (2005) Hypericin - the facts about a controversial agent. Curr Pharm Des 11:233–253CrossRefGoogle Scholar
  27. 27.
    Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant-environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot 98:793–804CrossRefGoogle Scholar
  28. 28.
    Maggi F, Ferretti G, Pocceschi N, Meneghini L, Ricciutelli M (2004) Morphological, histochemical and phytochemical investigation of the genus Hypericum of the central Italy. Fitoterapia 75:702–711CrossRefGoogle Scholar
  29. 29.
    Römpp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 139:759–783CrossRefGoogle Scholar
  30. 30.
    Shih C-J, Chen P-Y, Liaw C-C, Lai Y-M, Yang Y-L (2014) Bringing microbial interactions to light using imaging mass spectrometry. Nat Prod Rep. doi: 10.1039/c3np70091g Google Scholar
  31. 31.
    Bjarnholt N, Li B, D’Alvise J, Janfelt C (2014) Mass spectrometry imaging of plant metabolites—principles and possibilities. Nat Prod Rep. doi: 10.1039/c3np70100j Google Scholar
  32. 32.
    Jaeger RJ, Lamshöft M, Gottfried S, Spiteller M, Spiteller P (2013) HR-MALDI-MS imaging assisted screening of β-carboline alkaloids discovered from Mycena metata. J Nat Prod 76:127–134CrossRefGoogle Scholar
  33. 33.
    Kusari P, Kusari S, Lamshöft M, Sezgin S, Spiteller M, Kayser O (2014) Quorum quenching is an antivirulence strategy employed by endophytic bacteria. Appl Microbiol Biotechnol 98:7173–7183CrossRefGoogle Scholar
  34. 34.
    Kusari S, Lamshöft M, Kusari P, Gottfried S, Zühlke S, Louven K, Hentschel U, Kayser O, Spiteller M (2014) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77:2577–2584CrossRefGoogle Scholar
  35. 35.
    Ciccarelli D, Andreucci AC, Pagni AM (2001) Translucent glands and secretory canals in Hypericum perforatum L. (Hypericaceae): morphological, anatomical and histochemical studies during the course of ontogenesis. Ann Bot 88:637–644CrossRefGoogle Scholar
  36. 36.
    Łotocka B, Osińska E (2010) Shoot anatomy and secretory structures in Hypericum species (Hypericaceae). Bot J Linn Soc 163:70–86CrossRefGoogle Scholar
  37. 37.
    Nürk NM, Crockett SL (2011) Morphological and phytochemical diversity among Hypericum species of the Mediterranean Basin. Med Aromat Plant Sci Biotechnol 5:14–28Google Scholar
  38. 38.
    Perrone R, Rosa PD, Castro OD, Colombo P (2013) Leaf and stem anatomy in eight Hypericum species (Clusiaceae). Acta Bot Croat 72:269–286Google Scholar
  39. 39.
    Soelberg J, Jørgensen LB, Jäger AK (2007) Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann Bot 99:1097–1100CrossRefGoogle Scholar
  40. 40.
    Hölscher D, Shroff R, Knop K, Gottschaldt M, Crecelius A, Schneider B, Heckel DG, Schubert US, Svatos A (2009) Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species. Plant J 60:907–918CrossRefGoogle Scholar
  41. 41.
    Thunig J, Hansen SH, Janfelt C (2011) Analysis of secondary plant metabolites by indirect desorption electrospray ionization imaging mass spectrometry. Anal Chem 83:3256–3259CrossRefGoogle Scholar
  42. 42.
    Kusari S, Zühlke S, Borsch T, Spiteller M (2009) Positive correlations between hypericin and putative precursors detected in the quantitative secondary metabolite spectrum of Hypericum. Phytochemistry 70:1222–1232CrossRefGoogle Scholar
  43. 43.
    Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic Press, LondonGoogle Scholar
  44. 44.
    Smelcerovic A, Spiteller M (2006) Phytochemical analysis of nine Hypericum L. species from Serbia and the F.Y.R. Macedonia. Pharmazie 61:251–252Google Scholar
  45. 45.
    Izhaki I (2002) Emodin – a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217CrossRefGoogle Scholar
  46. 46.
    Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical ChemistryTU DortmundDortmundGermany
  2. 2.P. J. Safarik University in Kosice, Faculty of ScienceInstitute of Biology and EcologyKosiceSlovakia

Personalised recommendations