Analytical and Bioanalytical Chemistry

, Volume 407, Issue 16, pp 4757–4766 | Cite as

Forensic differentiation of Bacillus cereus spores grown using different culture media using Raman spectroscopy

  • Joshua R. Dettman
  • Jessica M. Goss
  • Christopher J. Ehrhardt
  • Kristina A. Scott
  • Jason D. Bannan
  • James M. RobertsonEmail author
Research Paper


Some microorganisms have been shown to retain a chemical signature indicative of the medium used for culturing. However, the repeatability of medium-specific chemical signatures has not been demonstrated from samples of microorganisms produced in the same batch or in different batches by the same sporulation protocol. Here, the variation in Raman spectra of bacterial endospores repeatedly prepared by the same procedure is compared to the variation between Raman spectra of spores prepared using different media. Bacillus cereus T strain (BcT) samples were correctly classified according to the medium used to induce sporulation for 100 % of spores grown in a controlled manner by the same scientist using Raman spectroscopy and multivariate data analysis. The proof-of-concept results from BcT spores produced in 12 different sporulation media showed correct classification by medium for 98 % of samples (with 100 % classification accuracy for all but one sporulation medium in this data set). Spectral differences were discerned between spores that had been freshly prepared or freeze-dried and spores that had been frozen; however, the differences did not impact the classification of the sporulation medium. Latent variables reduced the classification accuracy of BcT sporulated in G medium by different scientists using different media lots and stored for different periods of time and requires further study.


Bioanalytical methods Bacterial spores Chemometrics/statistics IR spectroscopy/Raman spectroscopy 



We are very grateful to Jack Hietpas for independent statistical analysis and confirmation of the results presented here. We would also like to thank Jason Brewer (FBI Laboratory, Chemistry Unit) for providing assistance with the Raman instrument and Lindsay Lundberg for spore preparations. This research was supported in part by an appointment to the Visiting Scientist Program at the FBI Laboratory Division, administered by the Oak Ridge Institute of Science and Education, through an interagency agreement between the US Department of Energy and the FBI.


This is publication number 14-11 of the Laboratory Division of the Federal Bureau of Investigation. Names of commercial manufacturers are provided for information only, and inclusion does not imply endorsement by the FBI or the US Government. The views expressed are those of the authors and do not necessarily reflect the official policy or position of the FBI or the U.S. Government.

Supplementary material

216_2015_8677_MOESM1_ESM.pdf (19 kb)
ESM 1 (PDF 19 kb)


  1. 1.
    Jackman J (2012) The microbe: the basics of structure, morphology, and physiology as they relate to microbial characterization and attribution. In: Cliff JB, Kreuzer HW, Ehrhardt CJ, Wunschel DS (eds) Chemical and physical signatures for microbial forensics. Springer, New York, pp 13–24CrossRefGoogle Scholar
  2. 2.
    Jarman KH, Kreuzer-Martin HW, Wunschel DS, Valentine NB, Cliff JB, Petersen CE, Colburn HA, Wahl KL (2008) Appl Environ Microbiol 74:3573–3582CrossRefGoogle Scholar
  3. 3.
    Kreuzer-Martin HW, Lott MJ, Dorigan J, Ehleringer JR (2003) Proc Natl Acad Sci U S A 100:815–819CrossRefGoogle Scholar
  4. 4.
    Rieck VT, Palumbo SA, Witter LD (1973) J Gen Microbiol 74:1–8CrossRefGoogle Scholar
  5. 5.
    Ehrhardt CJ, Chu V, Brown T, Simmons TL, Swan BK, Bannan J, Robertson JM (2010) Appl Environ Microbiol 76:1902–1912CrossRefGoogle Scholar
  6. 6.
    Wunschel DS, Colburn HA, Fox A, Fox KF, Harley WM, Wahl JH, Wahl KL (2008) J Microbiol Methods 74:57–63CrossRefGoogle Scholar
  7. 7.
    Whiteaker J, Fenselau C (2004) Agric Food Chem 53:3735–3742CrossRefGoogle Scholar
  8. 8.
    DeGelder J, Scheldeman P, Leus K, Heyndrickx M, Vandenabeele P, Moens L, DeVos P (2007) Anal Bioanal Chem 389:2143–2151CrossRefGoogle Scholar
  9. 9.
    DeGelder J, DeGussem K, Vandenabeele P, Vancanneyt M, DeVos P, Moens L (2007) Anal Chim Acta 603:167–175CrossRefGoogle Scholar
  10. 10.
    Hutsebaut D, Maquelin K, DeVos P, Vandenabeele P, Moens L, Puppels GJ (2004) Anal Chem 2004:6274–6281CrossRefGoogle Scholar
  11. 11.
    Choo-Smith L-P, Maquelin K, Vreeswijk T, Bruining HA, Puppels GJ, Thi NAN, Kirschner C, Naumann D, Ami D, Villa AM, Orsini F, Doglia SM, Lamfarraj H, Lamfarraj H, Sockalingum GD, Manfait M, Allouch P, Endtz HP (2001) Appl Environ Microbiol 67:1461–1469CrossRefGoogle Scholar
  12. 12.
    Stöckel S, Meisel S, Elschner M, Rösch P, Popp J (2012) Agnew Chem Int Ed 51:5339–5342CrossRefGoogle Scholar
  13. 13.
    Maquelin K, Kirschner C, Choo-Smith L-P, Van den Braak N, Endtz HP, Naumann D, Puppels GJ (2002) J Microbiol Meth 51:255–271CrossRefGoogle Scholar
  14. 14.
    Maquelin K, Choo-Smith L-P, Vreeswijk T, Endtz HP, Smith B, Bennett R, Bruining HA, Puppels GJ (2000) Anal Chem 72:12–19CrossRefGoogle Scholar
  15. 15.
    Helm D, Labischinski H, Schallehn G, Naumann D (1991) J Gen Microbiol 137:69–79CrossRefGoogle Scholar
  16. 16.
    Kümmerle M, Scherer S, Seiler H (1998) Appl Environ Microbiol 64:2207–2214Google Scholar
  17. 17.
    Stöckel S, Meisel S, Elschner M, Rösch P, Popp J (2012) Anal Chem 84:9873–9880CrossRefGoogle Scholar
  18. 18.
    Kelly JG, Trevisan J, Scott AD, Carmichael PL, Pollock HM, Martin-Hirsch PL, Martin FL (2011) J Proteome Res 10:1437–1448CrossRefGoogle Scholar
  19. 19.
    Trevisan J, Angelov PP, Carmichael PL, Scott AD, Martin FL (2012) Analyst 137:3203–3215CrossRefGoogle Scholar
  20. 20.
    Ramette A (2007) FEMS Microbiol Ecol 62:142–160CrossRefGoogle Scholar
  21. 21.
    Church BD, Halvorson H, Halvorson HO (1954) J Bacteriol 68:393–399Google Scholar
  22. 22.
    Hashimoto T, Black SH, Gerhardt P (1960) Can J Microbiol 6:203–212CrossRefGoogle Scholar
  23. 23.
    Burke WF (1982) J Gen Microbiol 128:1591–1597Google Scholar
  24. 24.
    Mueller JH, Hinton J (1941) Proc Soc Exp Biol and Me 48:330–333CrossRefGoogle Scholar
  25. 25.
    Pisal S, Wawde G, Salvankar S, Lade S, Kadam S (2006) AAPS PharmSciTech 7:E1–E8CrossRefGoogle Scholar
  26. 26.
    Schaeffer P, Millet J, Aubert JP (1965) Proc Natl Acad Sci USA 54:704–711CrossRefGoogle Scholar
  27. 27.
    Morisaki S, Ota C, Matsuda K, Kaku N, Fujiwara H, Oda R, Ishibashi H, Kubo T, Kawata M (2013). J Biomed Opt 18:116011–116018Google Scholar
  28. 28.
    So PTC, Yew EYS, Rowlands C (2013) Biophys J 105:2641–2654CrossRefGoogle Scholar
  29. 29.
    Standard Guide for Raman Shift Standards for Spectrometer Calibration (2007). ASTM Standard E1840. ASTM International, West Conshohocken, PA, 2000, DOI:  10.1520/E1840-96R07,
  30. 30.
    Cozzolino D, Vadell A, Ballesteros F, Galietta G, Barlocco N (2006) Anal Bioanal Chem 385:931–939CrossRefGoogle Scholar
  31. 31.
    Medina-Gutiérrez C, Luis-Quintanar J, Frausto-Reyes C, Sato-Berrú R (2005) Spectrochim Acta Part A 61:87–91CrossRefGoogle Scholar
  32. 32.
    Næs T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibration and classification. NIR Publications, Chicester, UKGoogle Scholar
  33. 33.
    Johnson DR, O’Higgins P, Moore WJ, McAndrew TJ (1989) Forensic Sci Int 41:41–53CrossRefGoogle Scholar
  34. 34.
    Snow CC, Hartman S, Giles E, Young FA (1979) J Forensic Sci 24:448–460Google Scholar
  35. 35.
    Kahraman M, Keseroğlu K, Çulha M (2011) Appl Spectrosc 65:500–506CrossRefGoogle Scholar
  36. 36.
    de Vries YP, Hornstra LM, de Vos WM, Abee T (2004) Appl Environ Microbiol 70:2514–2519CrossRefGoogle Scholar
  37. 37.
    Huang S, Chen D, Pelczar PL, Vepachedu VR, Setlow P, Li Y (2007) J Bacteriol 189:4681–4687CrossRefGoogle Scholar
  38. 38.
    Carmona P (1980) Spectrochim Acta Part A 36:705–712CrossRefGoogle Scholar
  39. 39.
    Nelson WH, Dasari R, Feld M, Sperry JF (2004) Appl Spectrosc 58:1408–1412CrossRefGoogle Scholar
  40. 40.
    DeGelder J, DeGussem K, Vandenabeele P, DeVos P, Moens L (2007) Anal Chim Acta 585:234–240CrossRefGoogle Scholar
  41. 41.
    Bassi D, Cappa F, Cocconcelli PS (2012) Water and cations flux during sporulation and germination. In: Abel-Santos E (ed) Bacterial spores: current research and applications. Caister Academic Press, NorfolkGoogle Scholar
  42. 42.
    Bach ML, Gilvarg C (1966) J Biol Chem 241:4563–4566Google Scholar
  43. 43.
    Barth A, Zscherp C (2002) Q Rev Biophys 35:369–430CrossRefGoogle Scholar
  44. 44.
    Aronson AI (2012) The structure and composition of the outer layers of the bacterial spores. In: Abel-Santos E (ed) Bacterial spores: current research and applications. pp 57–71Google Scholar
  45. 45.
    Dai D, Holder D, Raskin L, Xi C (2011). BMC Microbiol 11 (59)Google Scholar
  46. 46.
    Madonna AJ, Basile F, Furlong E, Voorhees KJ (2001) Rapid Commun Mass Sp 15:1068–1074CrossRefGoogle Scholar
  47. 47.
    Shields MJ, Hahn KR, Janzen TW, Goji N, Thomas MC, Kingombe CB, Paquet C, Kell AJ, Amoako KK (2012) J Food Prot 75:1243–1248CrossRefGoogle Scholar
  48. 48.
    Whiteaker J, Karns J, Fenselau C, Purdue ML (2004) Foodborne Pathog Dis 1:185–194CrossRefGoogle Scholar
  49. 49.
    Gao W, Smith DW, Li Y (2007) Water Environ Res 79:507–513CrossRefGoogle Scholar
  50. 50.
    Wyatt LR, Waites WM (1975) J Gen Microbiol 89:337–344CrossRefGoogle Scholar
  51. 51.
    Harz M, Rösch P, Peschke P-D, Ronnenberger O, Burkhardt H, Popp J (2005) Analyst 130:1543–1550CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • Joshua R. Dettman
    • 1
  • Jessica M. Goss
    • 1
  • Christopher J. Ehrhardt
    • 3
  • Kristina A. Scott
    • 1
  • Jason D. Bannan
    • 2
  • James M. Robertson
    • 1
    Email author
  1. 1.Counterterrorism Forensic Science Research UnitFBI LaboratoryQuanticoUSA
  2. 2.Biological ScienceFBI LaboratoryQuanticoUSA
  3. 3.Department of Forensic ScienceVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations