Analytical and Bioanalytical Chemistry

, Volume 407, Issue 15, pp 4229–4245 | Cite as

Multianalyte method for the determination of pharmaceuticals in wastewater samples using solid-phase extraction and liquid chromatography–tandem mass spectrometry

Research Paper
Part of the following topical collections:
  1. Advances in LC-MS/MS Analysis

Abstract

A fast and sensitive multianalyte/multiclass high-performance reversed-phase liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous analysis of 89 pharmaceuticals in influent and effluent wastewater samples. The method developed consists of solid-phase extraction (SPE) using a hydrophilic–lipophilic-balanced polymer followed by LC–MS/MS with electrospray ionization in both positive mode and negative mode. The selected pharmaceuticals belong to different classes—analgesic/anti-inflammatory drugs, antibiotics, antiepileptics, β-adrenoceptor-blocking drugs, lipid-regulating agents, statins, and many others. The influence of the mobile phase composition on the sensitivity of the method, and the optimum conditions for SPE in terms of analyte recovery were extensively studied. Chromatographic separation was performed on an Atlantis T3 (100 mm × 2.1 mm, 3-μm) column with a gradient elution using methanol–0.01 % v/v formic acid as the mobile phase in positive ionization mode determination and methanol–acetonitrile–1 mM ammonium formate as the mobile phase in negative ionization mode determination. Recoveries for most of the compounds ranged from 50 to 120 %. Precision, expressed as relative standard deviations, was always below 15 %, and the method detection limits ranged from 1.06 ng/L (4-hydroxyomeprazole) to 211 ng/L (metformin). Finally, the method developed was applied to the determination of target analytes in wastewater samples obtained from the Psyttalia wastewater treatment plant, Athens, Greece. Although SPE of pharmaceuticals from wastewater samples and their determination by LC–MS/MS is a well-established technique, the uniqueness of this study lies in the simultaneous determination of a remarkable number of compounds belonging to more than 20 drug classes. Moreover, the LC–MS/MS method has been thoroughly optimized so that maximum sensitivity is achieved for most of the compounds, making the proposed method a valuable tool for pharmaceutical analysis in influent and effluent wastewater at the sub-nanogram per liter level.

Keywords

Pharmaceuticals Wastewater Solid-phase extraction Liquid chromatography–tandem mass spectrometry Mobile phase optimization 

Supplementary material

216_2015_8654_MOESM1_ESM.pdf (3.2 mb)
ESM 1(PDF 3.16 MB)

References

  1. 1.
    Dussault EB, Balakrishnan VK, Sverko E, Solomon KR, Sibley PK (2008) Environ Toxicol Chem 27:425–432CrossRefGoogle Scholar
  2. 2.
    US Environmental Protection Agency (2010) Pharmaceuticals and personal care products (PPCPs). http://www.epa.gov/ppcp/basic2.html. Accessed 25 Feb 2015
  3. 3.
    Fent K, Weston AA, Caminada D (2006) Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  4. 4.
    Mompelat S, Le Bot B, Thomas O (2009) Environ Int 35:803–814CrossRefGoogle Scholar
  5. 5.
    Buchberger WW (2011) J Chromatogr A 1218:603–618CrossRefGoogle Scholar
  6. 6.
    Carlsson C, Johansson AK, Alvan G, Bergman K, Kühler T (2006) Sci Total Environ 364:67–87CrossRefGoogle Scholar
  7. 7.
    Cleuvers M (2003) Toxicol Lett 142:185–194CrossRefGoogle Scholar
  8. 8.
    Nödler K, Licha T, Bester K, Sauter M (2010) J Chromatogr A 1217:6511–6521CrossRefGoogle Scholar
  9. 9.
    Gross M, Petrović M, Barceló D (2006) Talanta 70:678–690CrossRefGoogle Scholar
  10. 10.
    Tarcomnicu I, van Nuijs ALN, Simons W, Bervoets L, Blust R, Jorens PG, Neels H, Covaci A (2011) Talanta 83:795–803CrossRefGoogle Scholar
  11. 11.
    Gracia-Lor E, Sanchez JV, Hernandez F (2010) J Chromatogr A 1217:622–632CrossRefGoogle Scholar
  12. 12.
    Huerta-Fontela M, Galceran MT, Ventura F (2010) J Chromatogr A 1217:4212–4222CrossRefGoogle Scholar
  13. 13.
    Lopez-Serna R, Petrović M, Barceló D (2011) Chemosphere 85:1390–1399CrossRefGoogle Scholar
  14. 14.
    Ferrer I, Zweigenbaum JA, Thurman EM (2010) J Chromatogr A 1217:5674–5686CrossRefGoogle Scholar
  15. 15.
    Gros M, Rodríguez-Mozaz S, Barceló D (2012) J Chromatogr A 1248:104–121CrossRefGoogle Scholar
  16. 16.
    Laven M, Alsberg T, Yu Y, Adolfsson-Erici J (2009) J Chromatogr A 1216:49–62CrossRefGoogle Scholar
  17. 17.
    Madureira TV, Barreiro JC, Rocha MJ, Cass QB, Tiritan ME (2009) J Chromatogr A 1216:7033–7042CrossRefGoogle Scholar
  18. 18.
    Rodil R, Quintana JB, Lopez-Mahia P, Muniategui-Lorenzo S, Prada- Rodriguez D (2009) J Chromatogr A 1216:2958–2969CrossRefGoogle Scholar
  19. 19.
    Huntscha S, Singer HP, McArdell CS, Frank CE, Hollender J (2012) J Chromatogr A 1268:74–83CrossRefGoogle Scholar
  20. 20.
    Boleda R, Galceran T, Ventura F (2013) J Chromatogr A 1286:146–158CrossRefGoogle Scholar
  21. 21.
    Gilart N, Marcé RM, Borrull F, Fontanals N (2012) J Sep Sci 35:875–882CrossRefGoogle Scholar
  22. 22.
    Gracia-Lor E, Martínez M, Sancho JV, Peñuela G, Hernández F (2012) Talanta 99:1011–1023CrossRefGoogle Scholar
  23. 23.
    Ibanez M, Guerrero C, Sancho JV, Hernandez F (2009) J Chromatogr A 1216:2529–2539CrossRefGoogle Scholar
  24. 24.
    Kim H, Hong Y, Park J, Sharma VK, Cho S (2013) Chemosphere 91:888–894CrossRefGoogle Scholar
  25. 25.
    Dorival-García N, Zafra-Gómez A, Cantarero S, Navalón A, Vílchez JL (2013) Microchem J 106:323–333CrossRefGoogle Scholar
  26. 26.
    Togola A, Budzinski H (2008) J Chromatogr A 1177:150–158CrossRefGoogle Scholar
  27. 27.
    Guitart C, Readman JW (2010) Anal Chim Acta 658:32–40CrossRefGoogle Scholar
  28. 28.
    Varga M, Dobor J, Helenkár A, Jurecska L, Yao J, Záray G (2010) Microchem J 95:353–358CrossRefGoogle Scholar
  29. 29.
    Hu R, Yang Z, Zhang L (2011) Talanta 85:1751–1759CrossRefGoogle Scholar
  30. 30.
    Unceta N, Sampedro MC, Abu Bakar NK, Gσmez-Caballero A, Goicolea MA, Barrio RJ (2010) J Chromatogr A 1217:3392–3399CrossRefGoogle Scholar
  31. 31.
    Trenholm RA, Vanderford BJ, Snyder SA (2009) Talanta 79:1425–1432CrossRefGoogle Scholar
  32. 32.
    Basheer C, Lee J, Pedersen-Bjergaard S, Rasmussen KE, Lee HK (2010) J Chromatogr A 1217:6661–6667CrossRefGoogle Scholar
  33. 33.
    Gilart N, Miralles N, Marcé RM, Borrull F, Fontanals N (2013) Anal Chim Acta 774:51–60CrossRefGoogle Scholar
  34. 34.
    Kim DH, Lee DW (2003) J Chromatogr A 984:153–158CrossRefGoogle Scholar
  35. 35.
    Barbosa J, Toro I, Bergés R, Sanz-Nebot V (2001) J Chromatogr A 915:85–96CrossRefGoogle Scholar
  36. 36.
    Rainville PD, Smith NW, Cowan D, Plumb RS (2012) J Pharm Biomed 59:138–150CrossRefGoogle Scholar
  37. 37.
    Llorca M, Gros M, Rodríguez-Mozaz S, Barceló D (2014) J Chromatogr A 1369:43–51CrossRefGoogle Scholar
  38. 38.
    Gros M, Petrovic M, Barcelo D (2009) Anal Chem 81:898–912CrossRefGoogle Scholar
  39. 39.
    WADA Project Team (2003) WADA technical document – TD2003IDCR: identification criteria for qualitative assays. http://www.wada-ama.org/rtecontent/document/criteria_1_2.pdf
  40. 40.
    European Commission (2002) Off J Eur Commun L 221:8–36Google Scholar
  41. 41.
    Borecka M, Białk-Bielińska A, Siedlewicz G, Kornowska K, Kumirska J, Stepnowski P, Pazdro K (2013) J Chromatogr A 1304:138–146CrossRefGoogle Scholar
  42. 42.
    Gómez-Pérez ML, Plaza-Bolaños P, Romero-González R, Martínez-Vidal JL, Garrido-Frenich A (2012) J Chromatogr A 1248:130–138CrossRefGoogle Scholar
  43. 43.
    Ashcroft AE (1997) In: Barnett NW (ed) Organic mass spectrometry. Royal Society of Chemistry, CambridgeGoogle Scholar
  44. 44.
    Mutavdžić Pavlović D, Babić S, Dolar D, Ašperger D, Košutić K, Horvat AJM, Kaštelan-Macan M (2010) J Sep Sci 33:258–267CrossRefGoogle Scholar
  45. 45.
    Zhang ZL, Zhou JL (2007) J Chromatogr A 1154:205–213CrossRefGoogle Scholar
  46. 46.
    Νováková L, Šatínský D, Solich P (2008) Trends Anal Chem 27:352–367CrossRefGoogle Scholar
  47. 47.
    Miao XS, Metcalfe CD (2003) J Chromatogr A 998:133–141CrossRefGoogle Scholar
  48. 48.
    Wu J, Qian X, Yang Z, Zhang L (2010) J Chromatogr A 1217:1471–1475CrossRefGoogle Scholar
  49. 49.
    Scheurer M, Michel A, Brauch HJ, Ruck W, Sacher F (2012) Water Res 46:4790–4802CrossRefGoogle Scholar
  50. 50.
    Martín J, Buchberger W, Santos JL, Alonso E, Aparicio I (2012) J Chromatogr B 895–896:94–101CrossRefGoogle Scholar
  51. 51.
    Kosma CI, Lambropoulou DA, Albanis TA (2015) Water Res 70:436–448CrossRefGoogle Scholar
  52. 52.
    Reyes-Contreras C, Matamoros V, Ruiz I, Soto M, Bayona JM (2011) Chemosphere 84:1200–1207CrossRefGoogle Scholar
  53. 53.
    Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) Anal Bioanal Chem 391:1293–1308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratory of Analytical Chemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations