Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 16, pp 4513–4522 | Cite as

Determining fatty acids by desorption/ionization mass spectrometry using thin-layer chromatography substrates

  • Mario F. Mirabelli
  • Giuseppe Coviello
  • Dietrich A. VolmerEmail author
Rapid Communication
Part of the following topical collections:
  1. Mass Spectrometry Imaging

Abstract

In this study, we demonstrate the application of ambient mass spectrometry for measuring fatty acids from various biological sample matrices such as olive oil, fish oil, salmon, and human serum. Optimum performance was obtained after spotting samples onto thin-layer chromatography (TLC) plates as sample substrates for a custom-built solvent-assisted desorption/ionization mass spectrometry (DI-MS) interface. Good to excellent linearities (coefficients of determination, 0.9856 to 0.9977) and reproducibilities (average 6 % relative standard deviation (RSD) using syringe deposition) were obtained after application of an internal standard. Signal suppression phenomena were minimized by separating the analytes by TLC to some extent prior to DI-MS, leading to a fourfold increase of signal-to-noise ratios as compared to single spot mixture analysis without TLC separation.

Graphical Abstract

Solvent-assisted desorption/ionization-mass spectrometry

Keywords

Ambient ionization Desorption/ionization mass spectrometry Thin-layer chromatography Fatty acids 

Notes

Acknowledgments

GC acknowledges a fellowship from Rotary International (District 2120, Molfetta, Bari, Italy) for his research visit to Saarbrücken. The authors acknowledge Chemia s.r.l. (Bironto, Bari, Italy) for the GC analyses. DAV is grateful for general research support by the Alfried Krupp von Bohlen und Halbach-Stiftung.

Supplementary material

216_2015_8630_MOESM1_ESM.pdf (381 kb)
ESM 1 (PDF 381 kb)

References

  1. 1.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760CrossRefGoogle Scholar
  2. 2.
    Gode D, Volmer DA (2013) Lipid imaging by mass spectrometry. Analyst 138:1289–1315CrossRefGoogle Scholar
  3. 3.
    Kindness A, Sekaran CN, Feldmann J (2003) Two-dimensional mapping of copper and zinc in liver sections by laser ablation-inductively coupled plasma mass spectrometry. J Clin Chem 49:1916–1923CrossRefGoogle Scholar
  4. 4.
    Burns MS (1982) Applications of secondary ion mass spectrometry (SIMS) in biological research: a review. J Microsc 127:237–258CrossRefGoogle Scholar
  5. 5.
    Takáts Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473CrossRefGoogle Scholar
  6. 6.
    Cody RB, Laramée JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2302CrossRefGoogle Scholar
  7. 7.
    Chernetsova ES, Morlock GE (2011) Ambient desorption ionization mass spectrometry (DART, DESI) and its bioanalytical applications. Bioanal Rev 3:1–9CrossRefGoogle Scholar
  8. 8.
    Zakàts Z, Wiseman JM, Cooks RG (2005) Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J Mass Spectrom 40:1261–1275CrossRefGoogle Scholar
  9. 9.
    Cooks RG, Ouyang Z, Takàts Z, Wiseman JM (2006) Ambient mass spectrometry. Science 311:1566–1570CrossRefGoogle Scholar
  10. 10.
    Morlock G, Ueda Y (2007) New coupling of planar chromatography with direct analysis in real time mass spectrometry. J Chromatogr A 1143:243–251CrossRefGoogle Scholar
  11. 11.
    Alpmann A, Morlock G (2008) Rapid and sensitive determination of acrylamide in drinking water by planar chromatography and fluorescence detection after derivatization with dansulfinic acid. J Sep Sci 31:71–77CrossRefGoogle Scholar
  12. 12.
    Dytkiewitz E, Morlock GE (2008) Analytical strategy for rapid identification and quantification of lubricant additives in mineral oil by high-performance thin-layer chromatography with UV absorption and fluorescence detection combined with mass spectrometry and infrared spectroscopy. J AOAC Int 91:1237–1243Google Scholar
  13. 13.
    Morlock GE, Ristivojevic P, Chernetsova ES (2014) Combined multivariate data analysis of high-performance thin-layer chromatography fingerprints and direct analysis in real time mass spectra for profiling of natural products like propolis. J Chromatogr A 1328:104–112CrossRefGoogle Scholar
  14. 14.
    Chernetsova ES, Revelsky AI, Morlock GE (2011) Some new features of direct analysis in real time mass spectrometry utilizing the desorption at an angle option. Rapid Commun Mass Spectrom 25:2275–2282CrossRefGoogle Scholar
  15. 15.
    Kim HJ, Jang YP (2009) Direct analysis of curcumin in turmeric by DART-MS. Phytochem Anal 20:372–377CrossRefGoogle Scholar
  16. 16.
    Kim HJ, Jee EH, Ahn KS, Choi HS, Jang YP (2010) Identification of marker compound in herbal drugs on TLC with DART-MS. Arch Pharm Res 33:1355–1359CrossRefGoogle Scholar
  17. 17.
    Kim HJ, Oh MS, Hong J, Jang YP (2011) Quantitative analysis of major dibenzocyclooctane lignans in Schisandrae fructus by online TLC-DART-MS. Phytochem Anal 22:258–262CrossRefGoogle Scholar
  18. 18.
    Wood JL, Steiner RR (2011) Purification of pharmaceutical preparations using thin-layer chromatography to obtain mass spectra with direct analysis in real time and accurate mass spectrometry. Drug Test Anal 3:345–351CrossRefGoogle Scholar
  19. 19.
    Howlett SE, Steiner RR (2011) Validation of thin layer chromatography with AccuTOF-DART™ detection for forensic drug analysis. J Forensic Sci 56:1261–1267CrossRefGoogle Scholar
  20. 20.
    Srbek J, Klejdus B, Douša M, Břicháč J, Stasiak P, Reitmajer J, Nováková L (2014) Direct analysis in real time-high resolution mass spectrometry as a valuable tool for the pharmaceutical drug development. Talanta 130:518–526CrossRefGoogle Scholar
  21. 21.
    Kiguchi O, Oka K, Tamada M, Kobayashi T, Onodera J (2014) Thin-layer chromatography/direct analysis in real time time-of-flight mass spectrometry and isotope dilution to analyze organophosphorus insecticides in fatty foods. J Chromatogr A 1370:246–254CrossRefGoogle Scholar
  22. 22.
    Van Berkel GJ, Ford MJ, Deibel MA (2005) Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization. Anal Chem 77:1207–1215CrossRefGoogle Scholar
  23. 23.
    Van Berkel GJ, Kertesz V (2006) Automated sampling and imaging of analytes separated on thin-layer chromatography plates using desorption electrospray ionization mass spectrometry. Anal Chem 78:4938–4944CrossRefGoogle Scholar
  24. 24.
    Kertesz V, Van Berkel GJ (2008) Improved imaging resolution in desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 22:2639–2644CrossRefGoogle Scholar
  25. 25.
    Pasilis SP, Kertesz V, Van Berkel GJ, Schulz M, Schorcht S (2008) HPTLC/DESI-MS imaging of tryptic protein digests separated in two dimensions. J Mass Spectrom 43:1627–1635CrossRefGoogle Scholar
  26. 26.
    Kauppila TJ, Talaty N, Salo PK, Kotiaho T, Kostiainen R, Cooks RG (2006) New surfaces for desorption electrospray ionization mass spectrometry: porous silicon and ultra-thin layer chromatography plates. Rapid Commun Mass Spectrom 20:2143–2150CrossRefGoogle Scholar
  27. 27.
    Harry EL, Reynolds JC, Bristow AW, Wilson ID, Creaser CS (2009) Direct analysis of pharmaceutical formulations from non-bonded reversed-phase thin-layer chromatography plates by desorption electrospray ionisation ion mobility mass spectrometry. Rapid Commun Mass Spectrom 23:2597–2604CrossRefGoogle Scholar
  28. 28.
    Paglia G, Ifa DR, Wu C, Corso G, Cooks RG (2010) Desorption electrospray ionization mass spectrometry analysis of lipids after two-dimensional high-performance thin-layer chromatography partial separation. Anal Chem 82:1744–1750CrossRefGoogle Scholar
  29. 29.
    Ellis SR, Hughes JR, Mitchell TW, in het Panhuis M, Blanksby SJ (2012) Using ambient ozone for assignment of double bond position in unsaturated lipids. Analyst 137:1100–1110CrossRefGoogle Scholar
  30. 30.
    Seng JA, Ellis SR, Hughes JR, Maccarone AT, Truscott RJ, Blanksby SJ, Mitchell TW (2014) Characterisation of sphingolipids in the human lens by thin layer chromatography-desorption electrospray ionisation mass spectrometry. Biochim Biophys Acta 1841:1285–1291CrossRefGoogle Scholar
  31. 31.
    Van Berkel GJ, Tomkins BA, Kertesz V (2007) Thin-layer chromatography/desorption electrospray ionization mass spectrometry: investigation of goldenseal alkaloids. Anal Chem 79:2778–2789CrossRefGoogle Scholar
  32. 32.
    Kennedy JH, Wiseman JM (2010) Direct analysis of Salvia divinorum leaves for salvinorin A by thin layer chromatography and desorption electrospray ionization multi-stage tandem mass spectrometry. Rapid Commun Mass Spectrom 24:1305–1311CrossRefGoogle Scholar
  33. 33.
    Cabral EC, Mirabelli M, Perez CJ, Ifa DR (2013) Blotting assisted by heating and solvent extraction for DESI-MS imaging. J Am Soc Mass Spectrom 24:956–965CrossRefGoogle Scholar
  34. 34.
    Ifa DR, Manicke NE, Rusine AL, Cooks RG (2008) Quantitative analysis of small molecules by desorption electrospray ionization mass spectrometry from polytetrafluoroethylene surfaces. Rapid Commun Mass Spectrom 22:503–510CrossRefGoogle Scholar
  35. 35.
    Manicke NE, Kistler T, Ifa DR, Cooks RG, Ouyang Z (2009) High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 20:321–325CrossRefGoogle Scholar
  36. 36.
    Morlock G, Schwack W (2010) Hyphenations in planar chromatography. J Chromatogr A 1217:6600–6609CrossRefGoogle Scholar
  37. 37.
    Abu-Rabie P, Spooner N (2009) Direct quantitative bioanalysis of drugs in dried blood spot samples using a thin-layer chromatography mass spectrometer interface. Anal Chem 81:10275–10284CrossRefGoogle Scholar
  38. 38.
    Vovk I, Popović G, Simonovska B, Albreht A, Agbaba D (2012) Ultra-thin-layer chromatography mass spectrometry and thin-layer chromatography mass spectrometry of single peptides of angiotensin-converting enzyme inhibitors. J Chromatogr A 1218:3089–3094CrossRefGoogle Scholar
  39. 39.
    Park H, Zhou Y, Costello CE (2014) Direct analysis of sialylated or sulfated glycosphingolipids and other polar and neutral lipids using TLC-MS interfaces. J Lipid Res 55:773–781CrossRefGoogle Scholar
  40. 40.
    Dill AL, Ifa DR, Manicke NE, Ouyang Z, Cooks RG (2009) Mass spectrometric imaging of lipids using desorption electrospray ionization. J Chromatogr B 877:2883–2889CrossRefGoogle Scholar
  41. 41.
    Manicke NE, Wiseman JM, Ifa DR, Cooks RG (2008) Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. J Am Soc Mass Spectrom 19:531–543CrossRefGoogle Scholar
  42. 42.
    Moilanen T, Nikkari T (1981) The effect of storage on the fatty acid composition of human serum. Clin Chim Acta 114:111–116CrossRefGoogle Scholar
  43. 43.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  44. 44.
    Coviello G, Tutino V, Notarnicola M, Caruso MG (2014) Erythrocyte membrane fatty acids profile in colorectal cancer patients: a preliminary study. Anticancer Res 34:4775–4779Google Scholar
  45. 45.
    Blakley CR, Vestal ML (1983) Thermospray interface for liquid chromatography/mass spectrometry. Anal Chem 55:750–754CrossRefGoogle Scholar
  46. 46.
    Covey TR, Bruins AP, Henion JD (1988) Comparison of thermospray and ion spray mass spectrometry in an atmospheric pressure ion source. Org Mass Spectrom 23:178–186CrossRefGoogle Scholar
  47. 47.
    Volmer DA, Levsen K, Wünsch G (1993) Thermospray mass spectral studies of pesticides. Temperature and concentration effects on the ion abundances in thermospray mass spectra. J Chromatogr 647:235–258CrossRefGoogle Scholar
  48. 48.
    Volmer DA, Levsen K (1994) Mass spectrometric analysis of nitrogen- and phosphorus-containing pesticides by liquid chromatography-mass spectrometry. J Am Soc Mass Spectrom 5:655–675CrossRefGoogle Scholar
  49. 49.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829CrossRefGoogle Scholar
  50. 50.
    Henriques J, Dick JR, Tocher DR, Bell JD (2014) Nutritional quality of salmon products available from major retailers in the UK: content and composition of n-3 long-chain PUFA. Br J Nutr 112:964–975CrossRefGoogle Scholar
  51. 51.
    Visentainer JF, Noffs MD, de Oliveira CP, de Almeida VV, de Oliveira CC, de Souza NE (2007) Lipid content and fatty acid composition of 15 marine fish species from the Southeast Coast of Brazil. J Am Oil Chem Soc 84:543–547CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mario F. Mirabelli
    • 1
  • Giuseppe Coviello
    • 1
    • 2
  • Dietrich A. Volmer
    • 1
    Email author
  1. 1.Institute of Bioanalytical ChemistrySaarland UniversitySaarbrückenGermany
  2. 2.Ospedale Specializzato in Gastroenterologia, Saverio de BellisCastellana GrotteItaly

Personalised recommendations