Analytical and Bioanalytical Chemistry

, Volume 407, Issue 13, pp 3861–3867 | Cite as

Development of an enzyme-linked-immunosorbent-assay technique for accurate identification of poorly preserved silks unearthed in ancient tombs

  • Qin Zheng
  • Xiaofeng WuEmail author
  • Hailing Zheng
  • Yang Zhou
Research Paper


We report the preparation of a specific fibroin antibody and its use for the identification of unearthed ancient silk relics. Based on the 12-amino-acid repeat sequence “GAGAGSGAGAGS”, which is found in fibroin of the silkworm Bombyx mori, a specific antibody against fibroin was prepared in rabbits through peptide synthesis and carrier-protein coupling. This antibody was highly specific for fibroin found in silk. Using this antibody we have successfully identified four silk samples from different time periods. Our results reveal, for the first time, a method capable of detecting silk from a few milligrams of archaeological fabric that has been buried for thousands of years, confirming that the ancient practice of wearing silk products while praying for rebirth dated back to at least 400 BCE. This method also complements current approaches in silk detection, especially for the characterization of poorly preserved silks, promoting the investigation of silk origins and of ancient clothing cultures.

Graphical Abstract

Scheme of silk identification by enzyme-linked immunosorbent assayᅟ


Fibroin antibody Archaeological fabric ELISA Identification Silk 



We thank the Materials and Textiles Institute of Zhejiang Sci-Tech University (Hangzhou, China) for providing the modern fiber samples. This work was supported by the grant of the State Administration of Cultural Heritage, project 20120226 on Study of Silk Relics by Enzyme-linked Immunosorbent Assay and the grant of the National Key Technology R&D Program, project 2013BAK08B08 on Identification and Conservation of Archaeological Remains.

Supplementary material

216_2015_8621_MOESM1_ESM.pdf (842 kb)
ESM 1 (PDF 842 kb)


  1. 1.
    Cartechini L, Vagnini M, Palmieri M, Pitzurra L, Mello T, Mazurek J, Chiari G (2010) Acc Chem Res 43:867–876CrossRefGoogle Scholar
  2. 2.
    Good IL, Kenoyer JM, Meadow RH (2009) Archaeometry 51:457–466CrossRefGoogle Scholar
  3. 3.
    Garside P, Lahlil S, Wyeth P (2005) Appl Spectrosc 59:1242–1247CrossRefGoogle Scholar
  4. 4.
    Kim J, Wyeth P (2009) Preservation 6:60–67Google Scholar
  5. 5.
    Kim J, Zhang X, Wyeth P (2008) E-ps 5:41–46Google Scholar
  6. 6.
    Becker MA, Magoshi Y, Sakai T, Tuross NC (1997) Stud Conserv 42:27–37CrossRefGoogle Scholar
  7. 7.
    Caroline S, Jolon MD, Santanu DCT, Stefan C, Paul W (2012) Photochem Photobiol 88:1217–1226CrossRefGoogle Scholar
  8. 8.
    Cattaneo C, Gelsthorpe K, Phillips P, Sokol RJ, Smillie D (1991) Antiquity 65:878–881Google Scholar
  9. 9.
    Scott DA, Newman M, Schilling M, Derrick MR, Khanjian HP (1996) Archaeometry 38:103–112CrossRefGoogle Scholar
  10. 10.
    Potenza M, Sabatino G, Giambi F, Rosi L, Papini AM, Dei L (2013) Anal Bioanal Chem 405:691–701CrossRefGoogle Scholar
  11. 11.
    Yan F, Ge QY, Li Q, Yu M, Zhu XD, Pan J (2014) Sci Conserv Archaeol 26:71–75Google Scholar
  12. 12.
    Zhang K, Zhang BJ, Fang SQ (2013) Sci Conserv Archaeol 25:94–102Google Scholar
  13. 13.
    Zhou Y, Wang B, Sui M, Zhao F, Hu Z (2014) Studies in ConservationGoogle Scholar
  14. 14.
    Dash R, Mukherjee S, Kundu SC (2006) Int J Biol Macromol 38:255–258CrossRefGoogle Scholar
  15. 15.
    Dash R, Ghosh SK, Kaplan DL, Kundu SC (2007) Comp Biochem Physiol Part B: Biochem Mol Biol 147:129–134CrossRefGoogle Scholar
  16. 16.
    Creighton M (2001) Japan Stud 21:5–29CrossRefGoogle Scholar
  17. 17.
    Mhuka V, Dube S, Nindi MM (2013) Int J Biol Macromol 52:305–311CrossRefGoogle Scholar
  18. 18.
    Zhou C, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R (2000) Nucleic Acids Res 28:2413–2419CrossRefGoogle Scholar
  19. 19.
    Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J (2001) Proteins 44:119–122CrossRefGoogle Scholar
  20. 20.
    Zhang X, Yuan S (2010) Chin J Chem 28:656–662CrossRefGoogle Scholar
  21. 21.
    Chujo R, Shimaoka A, Nagaoka K, Kurata A, Inoue M (1996) Polymer 37:3693–3696CrossRefGoogle Scholar
  22. 22.
    Jin HJ, Kaplan DL (2003) Nature 424:1057–1061CrossRefGoogle Scholar
  23. 23.
    Degano I, Biesaga M, Colombini MP, Trojanowicz M (2011) J Chromatogr A 1218:5837–5847CrossRefGoogle Scholar
  24. 24.
    Hermes AC, Davies RJ, Greiff S, Kutzke H, Lahlil S, Wyeth P, Riekel C (2006) Biomacromolecules 7:777–783CrossRefGoogle Scholar
  25. 25.
    Palmieri M, Vagnini M, Pitzurra L, Rocchi P, Brunetti BG, Sgamellotti A, Cartechini L (2011) Anal Bioanal Chem 399:3011–3023CrossRefGoogle Scholar
  26. 26.
    Zhao F (1996) Southeast Cult 1:67–74Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Qin Zheng
    • 1
  • Xiaofeng Wu
    • 1
    Email author
  • Hailing Zheng
    • 2
  • Yang Zhou
    • 2
  1. 1.Silkworm Biotechnology Lab, College of Animal ScienceZhejiang UniversityHangzhouChina
  2. 2.Chinese Textiles Identification and Conservation CenterChina Silk MuseumHangzhouChina

Personalised recommendations