Analytical and Bioanalytical Chemistry

, Volume 407, Issue 12, pp 3271–3275 | Cite as

Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study

  • Greta Del Mistro
  • Silvia Cervo
  • Elena Mansutti
  • Riccardo Spizzo
  • Alfonso Colombatti
  • Pietro Belmonte
  • Renzo Zucconelli
  • Agostino Steffan
  • Valter Sergo
  • Alois Bonifacio
Rapid Communication

Abstract

Surface-enhanced Raman scattering (SERS) spectra were obtained from urine samples from subjects diagnosed with prostate cancer as well as from healthy controls, using Au nanoparticles as substrates. Principal component analysis (PCA) of the spectral data, followed by linear discriminant analysis (LDA), leads to a classification model with a sensitivity of 100 %, a specificity of 89 %, and an overall diagnostic accuracy of 95 %. Even considering the very limited number of samples involved in this report, preliminary results from this approach are extremely promising, encouraging further investigation.

Keywords

SERS Raman Prostate cancer Urine Nanoparticles 

References

  1. 1.
    Lumen N, Fonteyne V, De Meerleer G, De Visschere P, Ost P, Oosterlinck W, Villeirs G (2012) Screening and early diagnosis of prostate cancer: an update. Acta Clin Belg 67:270–275. doi:10.1179/ACB.67.4.2062671 Google Scholar
  2. 2.
    Kast RE, Tucker SC, Killian K, Trexler M, Honn KV, Auner GW (2014) Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev 33:673–693. doi:10.1007/s10555-013-9489-6 CrossRefGoogle Scholar
  3. 3.
    Li S, Zhang Y, Xu J, Li L, Zeng Q, Lin L, Guo Z, Liu Z, Xiong H, Liu S (2014) Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine. Appl Phys Lett 105:091104. doi:10.1063/1.4892667 CrossRefGoogle Scholar
  4. 4.
    Brereton RG (2003) Chemometrics: data analysis for the laboratory and chemical plant. John Wiley & Sons, ChichesterGoogle Scholar
  5. 5.
    Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca RatonGoogle Scholar
  6. 6.
    Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707. doi:10.1021/jp061667w CrossRefGoogle Scholar
  7. 7.
    Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 79:4215–4221. doi:10.1021/ac0702084 CrossRefGoogle Scholar
  8. 8.
    R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  9. 9.
    Beleites C, Sergo V (2014) ‘hyperSpec: a package to handle hyperspectral data sets in R’, R package version 0.98, URL http://hyperspec.r-forge.r-project.org
  10. 10.
    Liland KH, Mevik B-H (2015) Baseline: baseline correction of spectra. R package version 1.1-2. URL http://CRAN.R-project.org/package=baseline
  11. 11.
    Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28:2270–2271. doi:10.1093/bioinformatics/bts447 CrossRefGoogle Scholar
  12. 12.
    Venables WN, Ripley BD (2002) Modern applied statistics with S (4th ed.), Springer, New YorkGoogle Scholar
  13. 13.
    Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B, the R Core Team and Benesty M. (2014). Caret: classification and regression training. R package version 6.0-37. URL http://CRAN.R-project.org/package=caret
  14. 14.
    Wang T-L, Chiang HK, Lu H-H, Peng F-Y (2005) Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples. Opt Quant Electron 37:1415–1422. doi:10.1007/s11082-005-4221-6 CrossRefGoogle Scholar
  15. 15.
    Premasiri WR, Clarke RH, Womble ME (2001) Urine analysis by laser Raman spectroscopy. Lasers Surg Med 28:330–334. doi:10.1002/lsm.1058 CrossRefGoogle Scholar
  16. 16.
    Bonifacio A, Dalla Marta S, Spizzo R, Cervo S, Steffan A, Colombatti A, Sergo V (2014) Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Anal Bioanal Chem 406:2355–2365. doi:10.1007/s00216-014-7622-1 CrossRefGoogle Scholar
  17. 17.
    Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS (2013) The human urine metabolome. PLoS ONE 8:e73076. doi:10.1371/journal.pone.0073076 CrossRefGoogle Scholar
  18. 18.
    Hu P, Zheng X-S, Zong C, Li M-H, Zhang L-Y, Li W, Ren B (2014) Drop-coating deposition and surface-enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears. J Raman Spectrosc 45:565–573. doi:10.1002/jrs.4499 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Greta Del Mistro
    • 1
  • Silvia Cervo
    • 2
    • 3
  • Elena Mansutti
    • 1
    • 2
  • Riccardo Spizzo
    • 4
  • Alfonso Colombatti
    • 4
    • 5
  • Pietro Belmonte
    • 6
  • Renzo Zucconelli
    • 6
  • Agostino Steffan
    • 2
    • 3
  • Valter Sergo
    • 1
  • Alois Bonifacio
    • 1
  1. 1.Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
  2. 2.CRO-BiobankCRO Aviano, National Cancer InstituteAvianoItaly
  3. 3.Clinical Cancer PathologyCRO Aviano, National Cancer InstituteAvianoItaly
  4. 4.Division of Experimental Oncology 2CRO Aviano, National Cancer InstituteAvianoItaly
  5. 5.Centre of Excellence MAT Department of Medical and Biological ScienceUniversity of UdineUdineItaly
  6. 6.Urology DepartmentPoliclinico San GiorgioPordenoneItaly

Personalised recommendations