Analytical and Bioanalytical Chemistry

, Volume 407, Issue 14, pp 3955–3964 | Cite as

Direct immunosensing by spectral correlation interferometry: assay characteristics versus antibody immobilization chemistry

  • Alexandr G. Burenin
  • Alexandr E. Urusov
  • Alexei V. Betin
  • Alexey V. Orlov
  • Maxim P. Nikitin
  • Tatiana I. Ksenevich
  • Boris G. Gorshkov
  • Anatoly V. Zherdev
  • Boris B. Dzantiev
  • Petr I. Nikitin
Research Paper
Part of the following topical collections:
  1. Direct Optical Detection


A 3-channel biosensor based on spectral correlation interferometry (SCI) has been adapted for direct optical detection of antigens by measuring changes in thickness of a biolayer on functionalized glass slips employed as affordable single-use sensor chips. The instrument is insensitive to the bulk refractive index of a solution under test and provides signals in metrological units (pm or nm). Using real-time monitoring with the SCI, protocols for fabrication of sensor chips with different functional (epoxylated, carboxylated, and biotinylated) surfaces for antibody immobilization have been developed and optimized to minimize chip-to-chip variations and achieve better limit of detection (LOD), shorter assay time, and longer shelf life. The optimized coupling surfaces have been compared for detection of human serum albumin (HSA) used as a model agent of medical significance. The dynamic ranges for measuring the HSA concentration were 0.07–20, 0.12–30, and 0.25–10 μg/ml, and the assay durations were less than 20, 15, and 30 min for the epoxylated, carboxylated, and biotinylated chips, respectively. The advantages of each type of sensor chip have been shown, namely, the carboxylated chips feature the shortest assay time, the epoxylated ones demonstrate the best LOD, and the biotinylated chips exhibit the longest shelf life in an unprotected environment. The developed protocols of antibody immobilization can be used in different biosensors and assay techniques including those based on fluorescent, magnetic or plasmonic labels, etc. The SCI is well compatible with various partially transparent layers used in biosensing and with microarrays for multi-analyte detection.

Graphical Abstract

Scheme of direct immunosensing by spectral correlation interferometry (on the left) and features of label-free detection of human serum albumin for different antibody immobilization chemistry (on the right)


Biosensors Interferometry Reflectometry Label-free immunosensors Immobilization of biomolecules Human serum albumin 



Different aspects of the research of the GPI participants were supported by Governmental contract N 16.512.11.2124 and the Russian Foundation for Basic Research (grants nos. 13-02-01260, 13-03-12468, 14-02-00840, 14-04-31576 -mol_a, 14-29-07271- ofi-m, and 15-02-07791). The studies of INBI team were supported by Program of fundamental research no. 10 of the Presidium of the Russian Academy of Sciences and the Russian Foundation for Basic Research (grant no. 13-04-90451_Ukr_f_a).

Supplementary material

216_2015_8600_MOESM1_ESM.pdf (398 kb)
ESM 1 (PDF 397 kb)


  1. 1.
    Liedberg B, Nylander C, Lundström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304CrossRefGoogle Scholar
  2. 2.
    Tiefenthaler K, Lukosz W (1984) Integrated optical switches and gas sensors. Opt Lett 9:137–139CrossRefGoogle Scholar
  3. 3.
    Liedberg B, Nylander C, Lundström I (1995) Biosensing with surface plasmon resonance—how it all started. Biosens Bioelectron 10:1–9CrossRefGoogle Scholar
  4. 4.
    Nikitin PI, Beloglazov AA (1994) A multi-purpose sensor based on surface plasmon polariton resonance in a Schottky structure. Sensors Actuators A 42:547–552CrossRefGoogle Scholar
  5. 5.
    Campbell DP (2008) Interferometric biosensors. In: Zourob E (ed) Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer, New YorkGoogle Scholar
  6. 6.
    Gauglitz G, Brecht A, Kraus G, Nahm W (1993) Chemical and biochemical sensors based on interferometry at thin (multi-) layers. Sensors Actuators B 11:21–27CrossRefGoogle Scholar
  7. 7.
    Nikitin PI, Gorshkov BG, Valeiko MV, Rogov SI (2000) Spectral-phase interference method for detection biochemical reactions on a surface. Quantum Electron 30:1099–1104CrossRefGoogle Scholar
  8. 8.
    Nikitin PI, Valeiko MV, Gorshkov BG (2003) New direct optical biosensors for multi-analyte detection. Sensors Actuators B 90:46–51CrossRefGoogle Scholar
  9. 9.
    Gauglitz G (2010) Direct optical detection in bioanalysis: an update. Anal Bioanal Chem 398:2363–2372CrossRefGoogle Scholar
  10. 10.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRefGoogle Scholar
  11. 11.
    Tokel O, Inci F, Demirci U (2014) Advances in plasmonic technologies for point of care applications. Chem Rev 114:5728–5752CrossRefGoogle Scholar
  12. 12.
    Wright JD, Oliver JV, Nolte RJM, Holder SJ, Sommerdijk NAJM, Nikitin PI (1998) The detection of phenols in water using a surface plasmon resonance system with specific receptors. Sensors Actuators B 51:305–310CrossRefGoogle Scholar
  13. 13.
    Posthuma-Trumpie GA, Korf J, Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569–582CrossRefGoogle Scholar
  14. 14.
    Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV (2014) Immunochromatographic methods in food analysis. Trends Anal Chem 55:81–93CrossRefGoogle Scholar
  15. 15.
    Leuvering JHW, Thal PJHM, van der Waart M, Schuurs AHWM (1980) Sol particle immunoassay (SPIA). J Immunoass 1:77–91CrossRefGoogle Scholar
  16. 16.
    Engvall E, Perlman P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 9:871–874CrossRefGoogle Scholar
  17. 17.
    Van Weemen BK, Schuurs AH (1971) Immunoassay using antigen-enzyme conjugates. FEBS Lett 15(3):232–236CrossRefGoogle Scholar
  18. 18.
    Thormählen I, Straub J, Grigull U (1985) Refractive index of water and its dependence on wavelength, temperature, and density. J Phys Chem Ref Data 14(4):933–945, Open access paper is available at NIST Web: CrossRefGoogle Scholar
  19. 19.
    Nikitin PI, Grigorenko AN, Beloglazov AA, Valeiko MV, Savchuk AI, Savchuk OA, Steiner G, Kuhne C, Huebner A, Salzer R (2000) Surface plasmon resonance interferometry for micro-array biosensing. Sensors Actuators A 85:189–193CrossRefGoogle Scholar
  20. 20.
    Nikitin PI, Gorshkov BG, Nikitin EP, Ksenevich TI (2005) Picoscope, a new label-free biosensor. Sensors Actuators B 111–112:500–504CrossRefGoogle Scholar
  21. 21.
    Urusov AE, Kostenko SN, Sveshnikov PG, Zherdev AV, Dzantiev BB (2011) Ochratoxin a immunoassay with surface plasmon resonance registration: lowering limit of detection by the use of colloidal gold immunoconjugates. Sensors Actuators B 156(1):343–349CrossRefGoogle Scholar
  22. 22.
    Orlov AV, Burenin AG, Shipunova VO, Lizunova AA, Gorshkov BG, Nikitin PI (2014) Development of immunoassays using interferometric real-time registration of their kinetics. Acta Nat 6:85–95Google Scholar
  23. 23.
    Orlov AV, Nikitin MP, Bragina VA, Znoyko SL, Zaikina MN, Ksenevich TI, Gorshkov BG, Nikitin PI (2015) A new real-time method for investigation of affinity properties and binding kinetics of magnetic nanoparticles. J Magn Magn Mater 380:231–235CrossRefGoogle Scholar
  24. 24.
    Navrátilová I, Skládal P (2003) Immunosensor for the measurement of human serum albumin in urine based on the spreeta surface plasmon resonance sensor. Supramol Chem 15:109–115CrossRefGoogle Scholar
  25. 25.
    Ymeti A, Kanger JS, Greve J, Besselink GAJ, Lambeck PV, Wijn R, Heideman RG (2005) Integration of microfluidics with a four-channel integrated optical young interferometer immunosensor. Biosens Bioelectron 20:1417–1421CrossRefGoogle Scholar
  26. 26.
    Human Serum Albumin (HSA) Binding to biotinylated anti-HSA lgG captured on planar neutravidin surface (2014) Reichert Technologies Life Sciences, USA. Accessed 03 Nov 2014
  27. 27.
    CKD Work Group (2013) Kidney disease: improving global outcomes clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150CrossRefGoogle Scholar
  28. 28.
    Gama-Axelsson T, Heimbürger O, Stenvinkel P, Bárány P, Lindholm B, Qureshi AR (2012) Serum albumin as predictor of nutritional status in patients with ESRD. Clin J Am Soc Nephrol 9:1446–1453CrossRefGoogle Scholar
  29. 29.
    Bachmann LM, Nilsson G, Bruns DE, McQueen MJ, Lieske JC, Zakowski JJ, Miller WG (2014) State of the art for measurement of urine albumin: comparison of routine measurement procedures to isotope dilution tandem mass spectrometry. Clin Chem 60(3):471–480CrossRefGoogle Scholar
  30. 30.
    Friedman AN, Fadem SZ (2010) Reassessment of albumin as a nutritional marker in kidney disease. J Am Soc Nephrol 21:223–230CrossRefGoogle Scholar
  31. 31.
    Qaseem A, Hopkins RH, Sweet DE, Starkey M, Shekelle P (2013) Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease: a clinical practice guideline from the American College of Physicians. Ann Intern Med 159(12):835–847Google Scholar
  32. 32.
    Hermanson GT (2013) Bioconjugate techniques, 3rd edn. Academic, NewYorkGoogle Scholar
  33. 33.
    Nikitin PI, Svetoch IE, Nikitin MP, Ksenevich TI, Gorshkov BG, Konov VI, Aksinin VI (2007) Optical picoscopes—new opportunities for biosensing and for molecular technologies. Proc SPIE-Int Soc Opt Eng 6733:67331M. doi: 10.1117/12.753319 Google Scholar
  34. 34.
    Vashist SK, Dixit CK, MacCraithad BD, O’Kennedy R (2011) Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay. Analyst 136:4431–4436CrossRefGoogle Scholar
  35. 35.
    Burenin AG, Nikitin MP, Orlov AV, Ksenevich TI, Nikitin PI (2013) Detection of pyrethroids by spectral correlation interferometry. Appl Biochem Microbiol 49(3):306–311CrossRefGoogle Scholar
  36. 36.
    O’Connell MA, Belanger BA, Haaland PD (1993) Calibration and assay development using the four-parameter logistic model. Chemom Intell Lab Syst 20(2):97–114CrossRefGoogle Scholar
  37. 37.
    Ivanov AE, Solodukhina N, Wahlgren M, Nilsson L, Vikhrov AA, Nikitin MP, Orlov AV, Nikitin PI, Kuzimenkova MV, Zubov VP (2011) Reversible conformational transitions of a polymer brush containing boronic acid and its interaction with mucin glycoprotein. Macromol Biosci 11(2):275–284CrossRefGoogle Scholar
  38. 38.
    Ivanov AE, Solodukhina NM, Nilsson L, Nikitin MP, Nikitin PI, Zubov VP, Vikhrov AA (2012) Binding of mucin to water-soluble and surface-grafted boronate-containing polymers. Polym Sci Ser A 54(1):1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexandr G. Burenin
    • 1
    • 2
  • Alexandr E. Urusov
    • 3
  • Alexei V. Betin
    • 1
  • Alexey V. Orlov
    • 1
  • Maxim P. Nikitin
    • 1
    • 2
  • Tatiana I. Ksenevich
    • 1
  • Boris G. Gorshkov
    • 1
  • Anatoly V. Zherdev
    • 3
  • Boris B. Dzantiev
    • 3
  • Petr I. Nikitin
    • 1
    • 4
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)MoscowRussia
  3. 3.A.N. Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  4. 4.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations