Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 12, pp 3277–3283 | Cite as

Multi-color reflectance imaging of middle ear pathology in vivo

  • Tulio A. ValdezEmail author
  • Nicolas Spegazzini
  • Rishikesh Pandey
  • Kaitlyn Longo
  • Christopher Grindle
  • Donald Peterson
  • Ishan BarmanEmail author
Rapid Communication

Abstract

Otoscopic examination using white-light illumination has remained virtually unchanged for well over a century. However, the limited contrast of white-light otoscopy constrains the ability to make accurate assessment of middle ear pathology and is subject to significant observer variability. Here, we employ a modified otoscope with multi-color imaging capabilities for superior characterization of the middle ear constituents in vivo and for enhanced diagnosis of acute otitis media and cholesteatoma. In this pilot study, five patients undergoing surgery for tympanostomy tube placement and congenital cholesteatoma excision were imaged using the custom-designed multi-color video-rate reflectance imaging system. We show that the multi-color imaging approach offers an increase in image contrast, thereby enabling clear visualization of the middle ear constituents, especially of the tympanic membrane vascularity. Differential absorption at the multiple wavelengths provides a measure of biochemical and morphological information, and the rapid acquisition and analysis of these images aids in objective evaluation of the middle ear pathology. Our pilot study shows the potential of using label-free narrow-band reflectance imaging to differentiate middle ear pathological conditions from normal middle ear. This technique can aid in obtaining objective and reproducible diagnoses as well as provide assistance in guiding excisional procedures.

Keywords

Otoscopy Acute otitis media Reflectance Autofluorescence Imaging Medical device 

Notes

Acknowledgments

This research was supported by the Connecticut Institute for Clinical and Translational Science (CICATS) and the JHU Whiting School of Engineering Startup Funds.

Supplementary material

216_2015_8580_MOESM1_ESM.pdf (2.3 mb)
ESM 1 (PDF 2.31 mb)

References

  1. 1.
    Blomgren K, Pitkaranta A (2005) Int J Pediatr Otorhinolaryngol 69:295–299CrossRefGoogle Scholar
  2. 2.
    Jensen PM, Lous J (1999) Fam Pract 16:262–268CrossRefGoogle Scholar
  3. 3.
    Pichichero ME, Casey JR (2008) Pediatr Infect Dis J 27:958–962CrossRefGoogle Scholar
  4. 4.
    Takata GS, Chan LS, Morphew T, Mangione-Smith R, Morton SC, Shekelle P (2003) Pediatrics 112:1379–1387CrossRefGoogle Scholar
  5. 5.
    Pichichero ME, Poole MD (2005) Int J Pediatr Otorhinolaryngol 69:361–366CrossRefGoogle Scholar
  6. 6.
    Roblyer D, Richards-Kortum R, Sokolov K, El-Naggar AK, Williams MD, Kurachi C, Gillenwater AM (2008) J Biomed Opt 13:024019CrossRefGoogle Scholar
  7. 7.
    Ponka D, Baddar F (2012) Can Fam Physician 58:976Google Scholar
  8. 8.
    Tjon Pian Gi RE, Halmos GB, van Hemel BM, van den Heuvel ER, van der Laan BF, Plaat BE, Dikkers FG (2012) Laryngoscope 122:1826–1830CrossRefGoogle Scholar
  9. 9.
    Niemel M, Uhari M, Jounio-Ervasti K, Luotonen J, Alho OP, Vierimaa E (1994) Pediatr Infect Dis J 13:765–768CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tulio A. Valdez
    • 1
    Email author
  • Nicolas Spegazzini
    • 2
  • Rishikesh Pandey
    • 2
  • Kaitlyn Longo
    • 3
  • Christopher Grindle
    • 1
  • Donald Peterson
    • 3
  • Ishan Barman
    • 4
    Email author
  1. 1.Department of Pediatric OtolaryngologyConnecticut Children’s Medical CenterHartfordUSA
  2. 2.G. R. Harrison Spectroscopy LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Biodynamics LaboratoryUniversity of Connecticut Health CenterFarmingtonUSA
  4. 4.Department of Mechanical Engineering and OncologyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations