Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 12, pp 3377–3391 | Cite as

Laser ablation-ICP-MS depth profiling to study ancient glass surface degradation

  • Serena Panighello
  • Johannes T. Van ElterenEmail author
  • Emilio F. Orsega
  • Ligia M. Moretto
Research Paper

Abstract

In general the analysis of archeological glass represents a challenge for a wide variety of objects because of the presence of physical and/or chemical damage on the surface of the artifact, also known as weathering or corrosion. To retrieve accurate bulk elemental information by laser ablation-inductively coupled plasma-mass spectrometry (ICP-MS), the original, pristine glass needs to be “reached”, thereby penetrating the alteration layer which is often more than 10 μm thick. To study this alteration layer the laser was operated in the drilling mode, either with a low (1 Hz) or a high (10 Hz) pulse repetition rate for a period of 50 s yielding detailed spatial information for ca. 20 elements over a shallow depth (ca. 5 μm) or less-detailed spatial information for 50–60 elements over a greater depth (ca. 50 μm). Quantitative elemental depth profiles (in wt%) were obtained with the so-called sum normalization calibration protocol, based on summation of the elements as their oxides to 100 wt%. We were able to associate the increase of SiO2 (in wt%) in the alteration layer to the volumetric mass density change in the glass as a result of depletion of Na2O and K2O. Also the interaction of the number of laser shots with the alteration layer is shown experimentally via depth measurements using profilometry. Chemical and physical changes in four ancient glass artifacts, directly and indirectly measureable by laser drilling, were studied as a function of internal and external factors such as age, composition, and exposure conditions.

Keywords

Laser ablation Microanalysis Depth profiling Bulk composition Internal standardization Glass density 

Notes

Acknowledgments

The authors would like to thank Dr. Nicole Boivin and coworkers (Sealinks project) and Dr. Edward Pollard (British Institute in Eastern Africa) for making the African glass beads available, the Corning Museum of Glass (via Professor Norman Tennent) for providing the crizzled glass, Professor Elti Cattaruzza (University Ca’ Foscari of Venice, Italy) for optical surface profiling analysis, and Dr. Marilee Wood (University of the Witwatersrand, South Africa), Professor Peter Robertshaw (California State University, USA), and Stephen Koob (Corning Museum of Glass) for constructive discussions in the preparation of this manuscript.

References

  1. 1.
    Guillong M, Günther D (2001) Quasi ‘non-destructive’ laser ablation-inductively coupled plasma mass spectrometry fingerprinting of sapphires. Spectrochim Acta B 56:1219–1231CrossRefGoogle Scholar
  2. 2.
    Günther D, Horn I, Hattendorf B (2000) Recent trends and developments in laser ablation-ICP-mass spectrometry. Fresen J Anal Chem 368(1):45–51CrossRefGoogle Scholar
  3. 3.
    Günther D, Hattendorf B (2005) Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. TrAC-Trends Anal Chem 24(3 SPEC. ISS):255–265CrossRefGoogle Scholar
  4. 4.
    Kuhn H-R (2005) Laser ablation ICP-MS: fundamental investigations on aerosols generated by laser ablation at ambient pressure. Swiss Federal Institute of Technology Zurich. Doctor of Natural Sciences:170Google Scholar
  5. 5.
    Cagno S, Favaretto L, Mendera M, Izmer A, Vanhaecke F, Janssens K (2012) Evidence of early medieval soda ash glass in the archaeological site of San Genesio (Tuscany). J Archaeol Sci 39(5):1540–1552CrossRefGoogle Scholar
  6. 6.
    De Raedt I, Janssens K, Veeckman J, Vincze L, Vekemans B, Jeffries TE (2001) Trace analysis for distinguishing between Venetian and façon-de-Venise glass vessels of the 16th and 17th century. J Anal Atom Spectrom 16(9):1012–1017CrossRefGoogle Scholar
  7. 7.
    Dussubieux L, Golitko M, Ryan Williams P, Speakman RJ (2007) In Glascock MD, Speakman RJ, Popelka-Filcoff RS (Eds.) Archaeological chemistry, analytical techniques and archaeological interpretation 968:349–363Google Scholar
  8. 8.
    Panighello S, Orsega EF, van Elteren JT, Šelih VS (2012) Analysis of polychrome Iron Age glass vessels from Mediterranean I, II and III groups by LA-ICP-MS. J Archaeol Sci 39(9):2945–2955CrossRefGoogle Scholar
  9. 9.
    Wagner B, Nowak A, Bulska E, Kunicki-Goldfinger J, Schalm O, Janssens K (2008) Complementary analysis of historical glass by scanning electron microscopy with energy dispersive X-ray spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Microchim Acta 162:415–424CrossRefGoogle Scholar
  10. 10.
    Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179(C):300–308CrossRefGoogle Scholar
  11. 11.
    Dal Bianco B, Bertoncello R (2008) The development of growth rings on ancient glass surfaces: description and simulation of the weathering. J Non-Cryst Solids 354(2–9):773–779CrossRefGoogle Scholar
  12. 12.
    Newton RG (1985) Durability of Glass – a review. Glass Technol 26(1):21–38Google Scholar
  13. 13.
    Schreiner M (1991) Glass of the past: the degradation and deterioration of medieval glass artifacts. Microchim Acta 104(1–6):255–264CrossRefGoogle Scholar
  14. 14.
    Kunicki-Goldfinger JJ (2008) Unstable historic glass: symptoms, causes, mechanisms and conservation. Rev Conserv 9:47–60Google Scholar
  15. 15.
    Hench LL (1975) Characterization of glass corrosion and durability. J Non-Cryst Solids 19(C):27–39CrossRefGoogle Scholar
  16. 16.
    Dussubieux L, Robertshaw P, Glascock MD (2009) LA-ICP-MS analysis of African glass beads: laboratory inter-comparison with an emphasis on the impact of corrosion on data interpretation. Int J Mass Spectrom 284(1–3):152–161CrossRefGoogle Scholar
  17. 17.
    Gratuze B (2013) In: Janssens K (ed) Modern methods for analysing archaeological and historical glass, 1st edn. John Wiley & Sons, Ltd, Chichester, pp 201–234CrossRefGoogle Scholar
  18. 18.
    Van Elteren JT, Izmer A, Šala M, Orsega EF, Šelih VS, Panighello S, Vanhaecke F (2013) 3D laser ablation-ICP-mass spectrometry mapping for the study of surface layer phenomena-a case study for weathered glass. J Anal Atom Spectrom 28(7):994–1004CrossRefGoogle Scholar
  19. 19.
    Vicenzi EP, Eggins S, Logan A, Wysoczanski R (2002) Microbeam characterization of corning archeological reference glasses: new additions to the Smithsonian microbeam standard collection. J Res Natl Inst Stan 107(6):719–727CrossRefGoogle Scholar
  20. 20.
    Wagner B, Nowak A, Bulska E, Hametner K, Günther D (2012) Critical assessment of the elemental composition of Corning archeological reference glasses by LA-ICP-MS. Anal Bioanal Chem 402:1667–1677CrossRefGoogle Scholar
  21. 21.
    Van Elteren JT, Tennent NH, Šelih VS (2009) Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration. Anal Chim Acta 644(1–2):1–9CrossRefGoogle Scholar
  22. 22.
    Paul A (1997) Chemical durability of glasses; a thermodynamic approach. J Mater Sci 12:2246–2268CrossRefGoogle Scholar
  23. 23.
    Adams BP (1992) Ch.2. In: Clark DE, Zoitos BK (eds) Corrosion of glass, ceramics and ceramic superconductors: principles, testing, characterization and applications. Noyes Pubblications, Park Ridge, pp 29–50Google Scholar
  24. 24.
    Fluegel A (2007) Global model for calculating room-temperature glass density from the composition. J Am Ceram Soc 90(8):2622–2625CrossRefGoogle Scholar
  25. 25.
    Wang HAO, Grolimund D, Giesen C, Borca CN, Shaw-Stewart JRH, Bodenmiller B, Günther D (2013) Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85(21):10107–10116CrossRefGoogle Scholar
  26. 26.
    Van Malderen SJM, van Elteren JT, Vanhaecke F (2015) Development of a fast laser ablation-inductively coupled plasma-mass spectrometry cell for sub-μm scanning of layered materials. J Anal At Spectrom 30:119–125CrossRefGoogle Scholar
  27. 27.
    Koob SP (2006) Conservation and care of glass objects. Published by Archetype Publications in association with The Corning Museum of Glass, New YorkGoogle Scholar
  28. 28.
    Jochum KP, Stoll B, Weis U, Jacob DE, Mertz-Kraus R, Andreae MO (2014) Non-matrix-matched calibration for the multi-element analysis of geological and environmental samples using 200 nm Femtosecond LA-ICP-MS: a comparison with nanosecond lasers. Geostand Geoanal Res. doi: 10.1111/j.1751-908X.2014.12028.x Google Scholar
  29. 29.
    Woodhead J, Hellstrom J, Paton C, Hergt J, Grieg A, Maas R (2008) In laser ablation-ICP-MS in the earth sciences: current practices and outstanding issues. In: Sylvester PJ (Ed.). Mineral Association of Canada, Vancouver, B.C., pp. 135–145Google Scholar
  30. 30.
    Mank AJG, Mason PRD (1999) A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples. J Anal Atom Spectrom 14:1143–1153CrossRefGoogle Scholar
  31. 31.
    Šelih VS, van Elteren JT (2011) Quantitative multi-element mapping of ancient glass using a simple and robust LA-ICP-MS rastering procedure in combination with image analysis. Anal Bioanal Chem 401(2):745–755CrossRefGoogle Scholar
  32. 32.
    Bertini M, Izmer A, Vanhaecke F, Krupp EV (2013) Critical evaluation of quantitative methods for the multi-elemental analysis of ancient glasses using laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 28:77–91CrossRefGoogle Scholar
  33. 33.
    Brill RH (1999) Chemical analyses of early glasses. The corning museum of glass. Corning, New YorkGoogle Scholar
  34. 34.
    Newton RG (1971) The enigma of the layered crusts on some weathered glasses, a chronological account of the investigations. Archaeometry 13:1–9CrossRefGoogle Scholar
  35. 35.
    Greiff S, Nallbani E (2008) When metal meets beads—technological study of early medieval metal foil beads from Albania. MEFRM: Mélanges L’École Fr Rome: Moyen-Âge 120/2:355–375Google Scholar
  36. 36.
    Sode T, Feveile C, Schnell U (2010) In: Begründet von Claus Dobiat und Klaus Leidorf Herausgegeben von Dobiat C, Ettel P, Fless F (Eds.) INTERNATIONALE ARCHÄOLOGIE - Studia honoraria - Band 31. Verlag Marie Leidorf GmbH, Rahden/WestfGoogle Scholar
  37. 37.
    Brill RH (1975) Crizzling—a probem in glass conservation. Conservation in archaeology and the applied arts, Stockholm Congress, London, IIC: 121–134Google Scholar
  38. 38.
    Newton R, Davison S (1989) Conservation of glass, 1st edn. Butterworths, LondonGoogle Scholar
  39. 39.
    Russo RE, Mao XL, Borisov OV, Liu HC (2000) Influence of wavelength on fractionation in laser ablation ICP-MS. J Anal At Spectrom 15(9):1115–1120CrossRefGoogle Scholar
  40. 40.
    Gonzalez J, Mao XL, Roy J, Mao SS, Russo RE (2002) Comparison of 193, 213 and 266 nm laser ablation ICP-MS. J Anal At Spectrom 17(9):1108–1113CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Serena Panighello
    • 1
    • 2
  • Johannes T. Van Elteren
    • 1
    Email author
  • Emilio F. Orsega
    • 2
  • Ligia M. Moretto
    • 2
  1. 1.Analytical Chemistry LaboratoryNational Institute of ChemistryLjubljanaSlovenia
  2. 2.Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVeniceItaly

Personalised recommendations