Analytical and Bioanalytical Chemistry

, Volume 407, Issue 12, pp 3517–3524 | Cite as

An approach for identification and determination of arsenic species in the extract of kelp

  • Lee L. YuEmail author
  • Chao Wei
  • Rolf Zeisler
  • Junting Tong
  • Rabia Oflaz
  • Haixia Bao
  • Jun Wang
Research Paper


The National Institute of Standards and Technology is developing a kelp powder standard reference material (SRM) in support of dietary supplement measurements. Edible seaweeds such as kelp and laver consumed as diet or dietary supplement contain tens of mg/kg arsenic. The speciation information of arsenic in the seaweed should be provided because the total arsenic alone does not fully address the safety issue of the dietary supplement as the value assignment is originally intended. The inability to avail all arsenic species for value assignment measurements prevented the certification of arsenic species in the candidate SRM; however, approximately 70 % of total arsenic extracted with a 1:1 volume fraction of methanol:water mixture allowed arsenic speciation values to be assigned to a procedure-defined extract, which may be used for method validation in research to improve upon current extraction and measurement practices. Arsenic species in kelp and laver were identified using electrospray ionization ion trap time of flight mass spectrometry (ESI-IT-TOF). Arsenosugars As(328), As(482), and As(392) were found in the kelp candidate SRM while As(328) and As(482) were found in GBW 08521, a certified reference material (CRM) of laver produced by the National Institute of Metrology of China (NIM). A discovery that the digests of kelp and laver contained only dimethylarsinic acid led to the conclusion that the seaweeds did not contain detectible levels of arsenobetaine, arsenocholine or trimethylarsine oxide that could overlap with the peaks of arsenosugars in the separation. The mean ± s of (5.68 ± 0.28) mg/kg and (13.43 ± 0.31) mg/kg found for As(482) and As(392) in kelp, respectively, using instrumental neutron activation analysis (INAA) demonstrated that value assignment measurement of arsenosugars was possible without arsenosugar calibration standards.


Arsenic species Arsenosugar Microwave Digestion INAA IT-TOF LC-ICP-MS 



Certain commercial items are identified in this paper to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified is necessarily the best for the purpose.


  1. 1.
    USDA National Nutrient Database for Standard Reference,
  2. 2.
    Kelp in Herbs and Supplements, New York University Langone Medical Center Accessed 3/26/2014
  3. 3.
    Gallagher PA, Wei X, Shoemaker JA, Brockhoff CA, Creed JT (1999) J Anal At Spectrom 14:1829CrossRefGoogle Scholar
  4. 4.
    Van Hulle M, Zhang C, Zhang X, Cornelis R (2002) Analyst 127:634CrossRefGoogle Scholar
  5. 5.
    Kaise T, Oya-Ohta Y, Ochi T, Okubo T, Hanaoka K, Irgolic KJ, Sakurai T, Matsubara C (1996) J Food Hyg Soc Jpn 37:135CrossRefGoogle Scholar
  6. 6.
    Feldmann J, Krupp EM (2011) Anal Bioanal Chem 399:1735CrossRefGoogle Scholar
  7. 7.
    Gamble BM, Gallagher PA, Shoemaker JA, Parks AN, Wei X, Schwegel CA, Creed JT (2002) Analyst 127:781CrossRefGoogle Scholar
  8. 8.
    Gamble BM, Gallagher PA, Shoemaker JA, Parks AN, Freeman DM, Schwegel CA, Creed JT (2003) Analyst 128:1458CrossRefGoogle Scholar
  9. 9.
    Larson EH, Sturup S (1994) J Anal At Spectrom 9:1099CrossRefGoogle Scholar
  10. 10.
    Yu LL, Butler TA, Turk GC (2006) Anal Chem 78:1651CrossRefGoogle Scholar
  11. 11.
    Lindstrom RM, Zeisler R, Greenberg RR (2007) J Radioanal Nucl Chem 271:311CrossRefGoogle Scholar
  12. 12.
    Zeisler R (2000) J Radioanal Nucl Chem 244:507CrossRefGoogle Scholar
  13. 13.
    Davis WC, Zeisler R, Sieber JR, Yu LL (2010) Anal Bioanal Chem 396:3041CrossRefGoogle Scholar
  14. 14.
    Edmonds JS, Francesconi KA (1981) Nature 289:12CrossRefGoogle Scholar
  15. 15.
    Edmonds JS, Morita M, Shibata Y (1987) J Chem Soc Perkin Trans I, 577Google Scholar
  16. 16.
    Pickford R, Miguens-Rodriguez M, Afzaal S, Speir P, Pergantis SA, Thomas-Oates JE (2002) J Anal At Spectrom 17:173CrossRefGoogle Scholar
  17. 17.
    Lai VWM, Cullen WR, Harrington CF, Reimer KJ (1997) Appl Organomet Chem 11:797CrossRefGoogle Scholar
  18. 18.
    Corr JJ, Larsen EH (1996) J Anal At Spectrom 11:1215CrossRefGoogle Scholar
  19. 19.
    Pergantis SA, Francesconi KA, Goessler W, Thomas-Oates JE (1997) Anal Chem 69:4931CrossRefGoogle Scholar
  20. 20.
    Miguens-Rodriguez M, Pickford R, Thomas-Oates JE, Pergantis SA (2002) Rapid Commun Mass Spectrom 16:323CrossRefGoogle Scholar
  21. 21.
    Krishna MVB, Castro J, Brewer TM, Marcus RK (2009) J Anal At Spectrom 24:199CrossRefGoogle Scholar
  22. 22.
    Liu Z, Mass J (2012) Spectrom 47:1627CrossRefGoogle Scholar
  23. 23.
    Chatterjee A (1999) Sci Total Environ 228:25CrossRefGoogle Scholar
  24. 24.
    Le X, Cullen WR, Reimer KJ (1994) Clin Chem 40:617Google Scholar
  25. 25.
    Francesconi KA, Tanggaard R, McKenzie CJ, Goessler W (2002) Clin Chem 48:92Google Scholar
  26. 26.
    Chatterjee A (2000) J Anal At Spectrom 15:753CrossRefGoogle Scholar
  27. 27.
    van Elteren JT, Šlejkovec Z, Kahn M, Goessler W (2007) Anal Chim Acta 585:24CrossRefGoogle Scholar
  28. 28.
    McAdam DP, Perera AMA, Stick RV (1987) Aust J Chem 40:1901CrossRefGoogle Scholar
  29. 29.
    James WD, Raghvan T, Gentry TJ, Shan G, Loeppert RH (2008) J Radioanal Nucl Chem 278:267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • Lee L. Yu
    • 1
    Email author
  • Chao Wei
    • 2
  • Rolf Zeisler
    • 1
  • Junting Tong
    • 2
  • Rabia Oflaz
    • 1
  • Haixia Bao
    • 2
  • Jun Wang
    • 2
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.National Institute of Metrology of ChinaBeijingChina

Personalised recommendations