Analytical and Bioanalytical Chemistry

, Volume 407, Issue 12, pp 3425–3435 | Cite as

Analysis of doxorubicin distribution in MCF-7 cells treated with drug-loaded nanoparticles by combination of two fluorescence-based techniques, confocal spectral imaging and capillary electrophoresis

  • Juliette Gautier
  • Emilie Munnier
  • Martin Soucé
  • Igor Chourpa
  • Laurence Douziech EyrollesEmail author
Research Paper


The intracellular distribution of the antiancer drug doxorubicin (DOX) was followed qualitatively by fluorescence confocal spectral imaging (FCSI) and quantitatively by capillary electrophoresis (CE). FCSI permits the localization of the major fluorescent species in cell compartments, with spectral shifts indicating the polarity of the respective environment. However, distinction between drug and metabolites by FCSI is difficult due to their similar fluorochromes, and direct quantification of their fluorescence is complicated by quantum yield variation between different subcellular environments. On the other hand, capillary electrophoresis with fluorescence detection (CE-LIF) is a quantitative method capable of separating doxorubicin and its metabolites. In this paper, we propose a method for determining drug and metabolite concentration in enriched nuclear and cytosolic fractions of cancer cells by CE-LIF, and we compare these data with those of FCSI. Significant differences in the subcellular distribution of DOX are observed between the drug administered as a molecular solution or as a suspension of drug-loaded iron oxide nanoparticles coated with polyethylene glycol. Comparative analysis of the CE-LIF vs FCSI data may lead to a tentative calibration of this latter method in terms of DOX fluorescence quantum yields in the nucleus and more or less polar regions of the cytosol.


Doxorubicin Nanovectors Capillary electrophoresis Cancer 





Capillary electrophoresis


Capillary electrophoresis with laser-induced fluorescence detection


Doxorubicin-loaded PEGylated SPION








Electroosmotic flow


Fluorescence confocal spectral imaging


Micellar electrokinetic chromatography



This study was supported by grants from ARC (Association pour la Recherche contre le Cancer).


  1. 1.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229. doi: 10.1124/pr.56.2.6 CrossRefGoogle Scholar
  2. 2.
    Wang Y, Wei X, Zhang C, Zhang F, Liang W (2010) Nanoparticle delivery strategies to target doxorubicin to tumor cells and reduce side effects. Ther Deliv 1:273–287. doi: 10.4155/tde.10.24 CrossRefGoogle Scholar
  3. 3.
    Hanušová V, Boušová I, Skálová L (2011) Possibilities to increase the effectiveness of doxorubicin in cancer cells killing. Drug Metab Rev 43:540–557. doi: 10.3109/03602532.2011.609174 CrossRefGoogle Scholar
  4. 4.
    Leonard RCF, Williams S, Tulpule A, Levine AM, Oliveros S (2009) Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (MyocetTM). Breast 18:218–224. doi: 10.1016/j.breast.2009.05.004 CrossRefGoogle Scholar
  5. 5.
    Lao J, Madani J, Puértolas T, Alvarez M, Hernández A, Pazo-Cid R, Artal A, Antón Torres A (2013) Liposomal doxorubicin in the treatment of breast cancer patients: a review. J Drug Deliv 2013:456409. doi: 10.1155/2013/456409 CrossRefGoogle Scholar
  6. 6.
    Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304. doi: 10.1016/j.addr.2009.11.002 CrossRefGoogle Scholar
  7. 7.
    Alexiou C, Jurgons R, Seliger C, Iro H (2006) Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol 6:2762–2768. doi: 10.1166/jnn.2006.464 CrossRefGoogle Scholar
  8. 8.
    Gautier J, Allard-Vannier E, Hervé-Aubert K, Soucé M, Chourpa I (2013) Design strategies of hybrid metallic nanoparticles for theragnostic applications. Nanotechnology 24:432002. doi: 10.1088/0957-4484/24/43/432002 CrossRefGoogle Scholar
  9. 9.
    Gautier J, Allard-Vannier E, Munnier E, Soucé M, Chourpa I (2013) Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J Control Release Off J Control Release Soc 169:48–61. doi: 10.1016/j.jconrel.2013.03.018 CrossRefGoogle Scholar
  10. 10.
    Holgado MA, Martin-Banderas L, Alvarez-Fuentes J, Fernandez-Arevalo M, Arias JL (2012) Drug targeting to cancer by nanoparticles surface functionalized with special biomolecules. Curr Med Chem 19:3188–3195. doi: 10.2174/092986712800784720 CrossRefGoogle Scholar
  11. 11.
    Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B (2011) Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta Gen Subj 1810:361–373. doi: 10.1016/j.bbagen.2010.04.007 CrossRefGoogle Scholar
  12. 12.
    Li S-D, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5:496–504. doi: 10.1021/mp800049w CrossRefGoogle Scholar
  13. 13.
    Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ (2014) Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem SETAC 33:481–492. doi: 10.1002/etc.2470 CrossRefGoogle Scholar
  14. 14.
    Karimi M, Avci P, Mobasseri R, Hamblin MR, Naderi-Manesh H (2013) The novel albumin-chitosan core-shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation. J Nanoparticle Res Interdiscip Forum Nanoscale Sci Technol 15:1651. doi: 10.1007/s11051-013-1651-0 Google Scholar
  15. 15.
    Gautier J, Munnier E, Paillard A, Hervé K, Douziech-Eyrolles L, Soucé M, Dubois P, Chourpa I (2012) A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int J Pharm 423:16–25. doi: 10.1016/j.ijpharm.2011.06.010 CrossRefGoogle Scholar
  16. 16.
    Anderson AB, Gergen J, Arriaga EA (2002) Detection of doxorubicin and metabolites in cell extracts and in single cells by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B 769:97–106. doi: 10.1016/S1570-0232(01)00633-X CrossRefGoogle Scholar
  17. 17.
    Anderson AB, Ciriacks CM, Fuller KM, Arriaga EA (2003) Distribution of zeptomole-abundant doxorubicin metabolites in subcellular fractions by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 75:8–15CrossRefGoogle Scholar
  18. 18.
    Anderson AB, Arriaga EA (2004) Subcellular metabolite profiles of the parent CCRF-CEM and the derived CEM/C2 cell lines after treatment with doxorubicin. J Chromatogr B 808:295–302. doi: 10.1016/j.jchromb.2004.05.017 CrossRefGoogle Scholar
  19. 19.
    Hervé K, Douziech-Eyrolles L, Munnier E, Cohen-Jonathan S, Soucé M, Marchais H, Limelette P, Warmont F, Saboungi ML, Dubois P, Chourpa I (2008) The development of stable aqueous suspensions of PEGylated SPIONs for biomedical applications. Nanotechnology 19:465608. doi: 10.1088/0957-4484/19/46/465608 CrossRefGoogle Scholar
  20. 20.
    Vankeerberghen P, Smeyers-Verbeke J (1992) The quality coefficient as a tool in decisions about the quality of calibration in graphite furnace atomic absorption spectrometry. Chemom Intell Lab Syst 15:195–202. doi: 10.1016/0169-7439(92)85009-R CrossRefGoogle Scholar
  21. 21.
    Martin DH (1967) Magnetism in solids. M.I.T. Press, CambridgeGoogle Scholar
  22. 22.
    Allard-Vannier E, Cohen-Jonathan S, Gautier J, Hervé-Aubert K, Munnier E, Soucé M, Legras P, Passirani C, Chourpa I (2012) Pegylated magnetic nanocarriers for doxorubicin delivery: a quantitative determination of stealthiness in vitro and in vivo. Eur J Pharm Biopharm 81:498–505. doi: 10.1016/j.ejpb.2012.04.002 CrossRefGoogle Scholar
  23. 23.
    Gautier J, Munnier E, Douziech-Eyrolles L, Paillard A, Dubois P, Chourpa I (2013) SERS spectroscopic approach to study doxorubicin complexes with Fe(2+) ions and drug release from SPION-based nanocarriers. Analyst 138:7354–7361. doi: 10.1039/c3an00787a CrossRefGoogle Scholar
  24. 24.
    Hande KR (2006) Topoisomerase II inhibitors. Update Cancer Ther 1:3–15. doi: 10.1016/j.uct.2006.04.001 CrossRefGoogle Scholar
  25. 25.
    Munnier E, Cohen-Jonathan S, Hervé K, Linassier C, Soucé M, Dubois P, Chourpa I (2011) Doxorubicin delivered to MCF7 cancer cells by puperparamagnetic iron oxide nanoparticles: effects onsubcellular distribution and cytotoxicity. J Nanopart Res 13:959–971. doi: 10.1007/s11051-010-0093-1
  26. 26.
    Bedia Erim F, Cifuentes A, Poppe H, Kraak JC (1995) Performance of a physically adsorbed high-molecular-mass polyethyleneimine layer as coating for the separation of basic proteins and peptides by capillary electrophoresis. J Chromatogr A 708:356–361. doi: 10.1016/0021-9673(95)00394-3 CrossRefGoogle Scholar
  27. 27.
    Hjertén S (1985) High-performance electrophoresis: elimination of electroendosmosis and solute adsorption. J Chromatogr A 347:191–198. doi: 10.1016/S0021-9673(01)95485-8 CrossRefGoogle Scholar
  28. 28.
    Altria KD (2003) Enhanced pharmaceutical analysis by CE using dynamic surface coating system. J Pharm Biomed Anal 31:447–453. doi: 10.1016/S0731-7085(02)00728-8 CrossRefGoogle Scholar
  29. 29.
    Lurie IS, Hays PA, Garcia AE, Panicker S (2004) Use of dynamically coated capillaries for the determination of heroin, basic impurities and adulterants with capillary electrophoresis. J Chromatogr A 1034:227–235. doi: 10.1016/j.chroma.2004.01.062 CrossRefGoogle Scholar
  30. 30.
    Skovsgaard T (1977) Transport and binding of daunorubicin, adriamycin, and rubidazone in Ehrlich ascites tumour cells. Biochem Pharmacol 26:215–22. doi: 10.1016/0006-2952(77)90306-9 CrossRefGoogle Scholar
  31. 31.
    Sakai-Kato K, Saito E, Ishikura K, Kawanishi T (2010) Analysis of intracellular doxorubicin and its metabolites by ultra-high-performance liquid chromatography. J Chromatogr B 878:1466–1470. doi: 10.1016/j.jchromb.2010.03.040 CrossRefGoogle Scholar
  32. 32.
    Cardoso S, Santos RX, Carvalho C, Correia S, Pereira GC, Pereira SS, Oliveira PJ, Santos MS, Proença T, Moreira PI (2008) Doxorubicin increases the susceptibility of brain mitochondria to Ca2+−induced permeability transition and oxidative damage. Free Radic Biol Med 45:1395–1402. doi: 10.1016/j.freeradbiomed.2008.08.008 CrossRefGoogle Scholar
  33. 33.
    Morjani H, Pignon B, Millot J-M, Debal V, Lamiable D, Potron G, Etienne J-C, Manfait M (1992) Intranuclear concentration measurements of doxorubicin in living leucocytes from patients treated for a lympho-proliferative disorder. Leuk Res 16:647–653. doi: 10.1016/0145-2126(92)90015-Y CrossRefGoogle Scholar
  34. 34.
    Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758. doi: 10.1016/j.addr.2007.06.008 CrossRefGoogle Scholar
  35. 35.
    Dessypris EN, Brenner DE, Baer MR, Hande KR (1988) Uptake and intracellular distribution of doxorubicin metabolites in B-lymphocytes of chronic lymphocytic leukemia. Cancer Res 48:503–506Google Scholar
  36. 36.
    Gavelová M, Hladíková J, Vildová L, Novotná R, Vondrácek J, Krcmár P, Machala M, Skálová L (2008) Reduction of doxorubicin and oracin and induction of carbonyl reductase in human breast carcinoma MCF-7 cells. Chem Biol Interact 176:9–18. doi: 10.1016/j.cbi.2008.07.011 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Juliette Gautier
    • 1
  • Emilie Munnier
    • 1
  • Martin Soucé
    • 1
  • Igor Chourpa
    • 1
  • Laurence Douziech Eyrolles
    • 1
    Email author
  1. 1.Universite Francois-Rabelais de Tours, EA6295 “Nanomedicaments et Nanosondes”ToursFrance

Personalised recommendations