Analytical and Bioanalytical Chemistry

, Volume 407, Issue 12, pp 3303–3311 | Cite as

Quantitative assessment of the degree of lipid unsaturation in intact Mortierella by Raman microspectroscopy

  • Ute Münchberg
  • Lysett Wagner
  • Carsten Rohrer
  • Kerstin Voigt
  • Petra Rösch
  • Gerhard Jahreis
  • Jürgen PoppEmail author
Research Paper


Fungi of the genus Mortierella can accumulate large amounts of unusual lipids depending on species, strain, and growth conditions. Fast and easy determination of key parameters of lipid quality for these samples is required. In this contribution, we apply Raman microspectroscopy to determine the degree of unsaturation for fungal lipids directly inside intact hyphae without elaborate sample handling. Six Mortierella species were grown under varying conditions, and Raman spectra of single lipid vesicles were acquired. From the spectra, we calculate a peak intensity ratio I(1270 cm−1)/I(1445 cm−1) from the signals of =CH and –CH2/–CH3 groups, respectively. This ratio is linked to the iodine value (IV) using spectra of reference compounds with known IV. IVs of fungal samples are compared to gas chromatography results. Values from both methods are in good accordance. Lipid composition is found to vary between the investigated species, with Mortierella alpina having the most unsaturated lipid (IV up to 280) and Mortierella exigua the least unsaturated (IV as low as 70). We find Raman microspectroscopy a suitable tool to determine the IV reliably, fast, and easily inside intact hyphae without extensive sample handling or treatment. The method can also be transferred to other microscopic samples.

Graphical Abstract

Raman spectroscopic access to the degree of unsaturation of lipid vesicles inside fungal hyphae


Oleaginous fungi Mortierellales Mortierellomycotina Lipid bodies Polyunsaturated fatty acids Arachidonic acid production 



Financial support from the Jena School for Microbial Communication as well as funding of the research group “Jenaer Biochip Initiative 2.0” within the framework “Unternehmen Region—InnoProfile Transfer” from the Federal Ministry of Education and Research, Germany (BMBF, grant number 03IPT513Y) is gratefully acknowledged.

Supplementary material

216_2015_8544_MOESM1_ESM.pdf (831 kb)
ESM 1 (PDF 831 KB)


  1. 1.
    Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86(11):807–815CrossRefGoogle Scholar
  2. 2.
    Samek O, Zemánek P, Jonáš A, Telle HH (2011) Characterization of oil-producing microalgae using Raman spectroscopy. Laser Phys Lett 8(10):701–709CrossRefGoogle Scholar
  3. 3.
    Huang C, X-f C, Xiong L, X-d C, L-l M, Chen Y (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31(2):129–139CrossRefGoogle Scholar
  4. 4.
    Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5CrossRefGoogle Scholar
  5. 5.
    Dyal SD, Narine SS (2005) Implications for the use of Mortierella fungi in the industrial production of essential fatty acids. Food Res Int 38(4):445–467CrossRefGoogle Scholar
  6. 6.
    Jang H-D, Lin Y-Y, Yang S-S (2005) Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Bioresour Technol 96(15):1633–1644CrossRefGoogle Scholar
  7. 7.
    Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95(3):287–291CrossRefGoogle Scholar
  8. 8.
    Shimizu S, Shinmen Y, Kawashima H, Akimoto K, Yamada H (1988) Fungal mycelia as a novel source of eicosapentaenoic acid: activation of enzyme(s) involved in eicosapentaenoic acid production at low temperature. Biochem Bioph Res Co 150(1):335–341CrossRefGoogle Scholar
  9. 9.
    Gao D, Zeng J, Zheng Y, Yu X, Chen S (2013) Microbial lipid production from xylose by Mortierella isabellina. Bioresour Technol 133:315–321CrossRefGoogle Scholar
  10. 10.
    Zeng J, Zheng Y, Yu X, Yu L, Gao D, Chen S (2013) Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Bioresour Technol 128:385–391CrossRefGoogle Scholar
  11. 11.
    Chaudhuri S, Ghosh S, Bhattacharyya DK, Bandyopadhyay S (1998) Effect of mustard meal on the production of arachidonic acid by Mortierella elongata SC-208. J Am Oil Chem Soc 75(8):1053–1055Google Scholar
  12. 12.
    Jang H-D, Lin Y-Y, Yang S-S (2000) Polyunsaturated fatty acid production with Mortierella alpina by solid substrate fermentation. Bot Bull Acad Sinica 41(1):41–48Google Scholar
  13. 13.
    Hou C (2008) Production of arachidonic acid and dihomo-γ-linolenic acid from glycerol by oil-producing filamentous fungi, Mortierella in the ARS culture collection. J Ind Microbiol Biot 35(6):501–506CrossRefGoogle Scholar
  14. 14.
    Dedyukhina E, Chistyakova T, Vainshtein M (2011) Biosynthesis of arachidonic acid by micromycetes (review). Appl Biochem Micro 47(2):109–117CrossRefGoogle Scholar
  15. 15.
    Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36(2):1097–1108CrossRefGoogle Scholar
  16. 16.
    Voigt K (2012) Zygomycota. In: Frey W (ed) Syllabus of plant families—A. Engler’s Syllabus der Pflanzenfamilien part 1/1: blue-green algae, Myxomycetes and Myxomycete-like organisms, phytoparasitic protists, heterotrophic heterokontobionta and fungi p.p. Borntraeger, Stuttgart, pp 130–162.Google Scholar
  17. 17.
    Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205CrossRefGoogle Scholar
  18. 18.
    Economou CN, Makri A, Aggelis G, Pavlou S, Vayenas DV (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol 101(4):1385–1388CrossRefGoogle Scholar
  19. 19.
    Certik M, Shimizu S (2000) Kinetic analysis of oil biosynthesis by an arachidonic acid-producing fungus, Mortierella alpina 1S-4. Appl Microbiol Biot 54(2):224–230CrossRefGoogle Scholar
  20. 20.
    Ho S-Y, Jiang Y, Chen F (2007) Polyunsaturated fatty acids (PUFAs) content of the fungus Mortierella alpina isolated from soil. J Agr Food Chem 55(10):3960–3966CrossRefGoogle Scholar
  21. 21.
    Kenny FS, Pinder SE, Ellis IO, Gee JMW, Nicholson RI, Bryce RP, Robertson JFR (2000) Gamma linolenic acid with tamoxifen as primary therapy in breast cancer. Int J Cancer 85(5):643–648CrossRefGoogle Scholar
  22. 22.
    Patel JV, Tracey I, Hughes EA, Lip GYH (2009) Omega-3 polyunsaturated fatty acids: a necessity for a comprehensive secondary prevention strategy. Vasc Health Risk Manage 5:801–810CrossRefGoogle Scholar
  23. 23.
    Friedman AN (2010) Omega-3 fatty acid supplementation in advanced kidney disease. Semin Dial 23(4):396–400CrossRefGoogle Scholar
  24. 24.
    Gogus U, Smith C (2010) n-3 Omega fatty acids: a review of current knowledge. Int J Food Sci Tech 45(3):417–436CrossRefGoogle Scholar
  25. 25.
    Kim W, McMurray DN, Chapkin RS (2010) n-3 Polyunsaturated fatty acids—physiological relevance of dose. Prostaglandins Leukot Essent Fat Acids 82(4–6):155–158CrossRefGoogle Scholar
  26. 26.
    Totani N, Oba K (1987) The filamentous fungus Mortierella alpina, high in arachidonic acid. Lipids 22(12):1060–1062CrossRefGoogle Scholar
  27. 27.
    Peng C, Huang H, Ji X, Liu X, You J, Lu J, Cong L, Xu X, Ouyang P (2010) A temperature-shift strategy for efficient arachidonic acid fermentation by Mortierella alpina in batch culture. Biochem Eng J 53(1):92–96CrossRefGoogle Scholar
  28. 28.
    Lu J, Peng C, Ji X-J, You J, Cong L, Ouyang P, Huang H (2011) Fermentation characteristics of Mortierella alpina in response to different nitrogen sources. Appl Biochem Biotech 164(7):979–990CrossRefGoogle Scholar
  29. 29.
    Sadeghi-Jorabchi H, Wilson RH, Belton PS, Edwards-Webb JD, Coxon DT (1991) Quantitative analysis of oils and fats by Fourier transform Raman spectroscopy. Spectrochim Acta A 47(9/10):1449–1458CrossRefGoogle Scholar
  30. 30.
    Weng Y-M, Weng R-H, Tzeng C-Y, Chen W (2003) Structural analysis of triacylglycerols and edible oils by near-infrared Fourier transform Raman spectroscopy. Appl Spectrosc 57(4):413–418CrossRefGoogle Scholar
  31. 31.
    Samyn P, Van Nieuwkerke D, Schoukens G, Vonck L, Stanssens D, Van Den Aabbeele H (2012) Quality and statistical classification of Brazilian vegetable oils using mid-infrared and Raman spectroscopy. Appl Spectrosc 66(5):552–565CrossRefGoogle Scholar
  32. 32.
    Reitzenstein S, Rösch P, Strehle MA, Berg D, Baranska M, Schulz H, Rudloff E, Popp J (2007) Nondestructive analysis of single rapeseeds by means of Raman spectroscopy. J Raman Spectrosc 38(3):301–308CrossRefGoogle Scholar
  33. 33.
    El-Abassy RM, Eeravuchira PJ, Donfack P, Von Der Kammer B, Materny A (2012) Direct determination of unsaturation level of milk fat using Raman spectroscopy. Appl Spectrosc 66(5):538–544CrossRefGoogle Scholar
  34. 34.
    Lyndgaard LB, Sørensen KM, van den Berg F, Engelsen SB (2012) Depth profiling of porcine adipose tissue by Raman spectroscopy. J Raman Spectrosc 43(4):482–489CrossRefGoogle Scholar
  35. 35.
    Samek O, Zemánek P, Bernatov S, Pilát Z, Telle HH (2012) Following lipids in the food chain: determination of the iodine value using Raman micro-spectroscopy. Spectrosc Eur 24(3):22–25Google Scholar
  36. 36.
    Afseth NK, Wold JP, Segtnan VH (2006) The potential of Raman spectroscopy for characterisation of the fatty acid unsaturation of salmon. Anal Chim Acta 572(1):85–92CrossRefGoogle Scholar
  37. 37.
    Samek O, Jonás A, Pilát Z, Zemánek P, Nedbal L, Tríska J, Kotas P, Trtílek M (2010) Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors 10(9):8635–8651CrossRefGoogle Scholar
  38. 38.
    Münchberg U, Wagner L, Spielberg ET, Voigt K, Rösch P, Popp J (2013) Spatially resolved investigation of the oil composition in single intact hyphae of Mortierella spp. with micro-Raman spectroscopy. BBA Mol Cell Biol Lipids 1831(2):341–349CrossRefGoogle Scholar
  39. 39.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509Google Scholar
  40. 40.
    Kuhnt K, Degen C, Jaudszus A, Jahreis G (2012) Searching for health beneficial n-3 and n-6 fatty acids in plant seeds. Eur J Lipid Sci Tech 114(2):153–160CrossRefGoogle Scholar
  41. 41.
    Schimek C, Wöstemeyer J (2005) Pheromone action in the fungal groups Chytridiomycota, and Zygomycota, and in the Oomycota. In: Esser K (ed) The Mycota I: growth, differentiation and sexuality, vol 1. The Mycota, 2nd edn. Springer, HeidelbergGoogle Scholar
  42. 42.
    Gooday GW (1994) Hormones in mycelial fungi. In: Wessels JH, Meinhardt F (eds) Growth, differentiation and sexuality, vol 1. The Mycota. Springer Berlin Heidelberg, pp 401–411Google Scholar
  43. 43.
    Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC (2003) Raman spectra of carotenoids in natural products. Spectrochim Acta A 59(10):2207–2212CrossRefGoogle Scholar
  44. 44.
    Schaffer HE, Chance RR, Silbey RJ, Knoll K, Schrock RR (1991) Conjugation length dependence of Raman scattering in a series of linear polyenes: implications for polyacetylene. J Chem Phys 94(6):4161–4170CrossRefGoogle Scholar
  45. 45.
    Langkilde FW, Jensen N-H, Wilbrandt R (1985) Time-resolved resonance Raman spectra of the lowest excited triplet state of all-trans-2,4,6-octatriene, alloocimene and neo-alloocimene. Chem Phys Lett 118(5):486–492CrossRefGoogle Scholar
  46. 46.
    Sajbidor J, Certík M, Dobroňová S (1988) Influence of different carbon sources on growth, lipid content and fatty acid composition in four strains belonging to mucorales. Biotechnol Lett 10(5):347–350CrossRefGoogle Scholar
  47. 47.
    Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33(4):573–580CrossRefGoogle Scholar
  48. 48.
    Shinmen Y, Shimizu S, Akimoto K, Kawashima H, Yamada H (1989) Production of arachidonic acid by Mortierella fungi. Appl Microbiol Biot 31(1):11–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ute Münchberg
    • 1
    • 2
  • Lysett Wagner
    • 3
    • 4
  • Carsten Rohrer
    • 5
  • Kerstin Voigt
    • 3
    • 4
  • Petra Rösch
    • 1
  • Gerhard Jahreis
    • 5
  • Jürgen Popp
    • 1
    • 6
    Email author
  1. 1.Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaJenaGermany
  2. 2.Jena School for Microbial CommunicationFriedrich Schiller UniversityJenaGermany
  3. 3.Jena Microbial Resource Collection, Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
  4. 4.Department Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-InstituteJenaGermany
  5. 5.Institute of NutritionFriedrich Schiller University JenaJenaGermany
  6. 6.Leibniz Institute of Photonic TechnologyJenaGermany

Personalised recommendations