Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 12, pp 3489–3497 | Cite as

Automated solid-phase extraction coupled online with HPLC-FLD for the quantification of zearalenone in edible oil

  • Sarah S. Drzymala
  • Stefan Weiz
  • Julia Heinze
  • Silvia Marten
  • Carsten Prinz
  • Annett Zimathies
  • Leif-Alexander Garbe
  • Matthias Koch
Research Paper

Abstract

Established maximum levels for the mycotoxin zearalenone (ZEN) in edible oil require monitoring by reliable analytical methods. Therefore, an automated SPE-HPLC online system based on dynamic covalent hydrazine chemistry has been developed. The SPE step comprises a reversible hydrazone formation by ZEN and a hydrazine moiety covalently attached to a solid phase. Seven hydrazine materials with different properties regarding the resin backbone, pore size, particle size, specific surface area, and loading have been evaluated. As a result, a hydrazine-functionalized silica gel was chosen. The final automated online method was validated and applied to the analysis of three maize germ oil samples including a provisionally certified reference material. Important performance criteria for the recovery (70–120 %) and precision (RSDr <25 %) as set by the Commission Regulation EC 401/2006 were fulfilled: The mean recovery was 78 % and RSDr did not exceed 8 %. The results of the SPE-HPLC online method were further compared to results obtained by liquid–liquid extraction with stable isotope dilution analysis LC-MS/MS and found to be in good agreement. The developed SPE-HPLC online system with fluorescence detection allows a reliable, accurate, and sensitive quantification (limit of quantification, 30 μg/kg) of ZEN in edible oils while significantly reducing the workload. To our knowledge, this is the first report on an automated SPE-HPLC method based on a covalent SPE approach.

Graphical Abstract

SPE-HPLC online method for automatic analysis of the mycotoxin zearalenone in edible oils.

Keywords

Dynamic covalent hydrazine chemistry (DCHC) Maize germ oil Food Mycotoxin 

Notes

Acknowledgments

The authors would like to thank the ZIM program (Zentrales Innovationsprogramm Mittelstand) of the Federal Ministry for Economic Affairs and Energy for funding (no. KF2201035SB1).

References

  1. 1.
    Maragos C (2010) Zearalenone occurrence and human exposure. World Mycotoxin J 3:369–383. doi: 10.3920/wmj2010.1240 CrossRefGoogle Scholar
  2. 2.
    Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18. doi: 10.1016/j.fct.2006.07.030 CrossRefGoogle Scholar
  3. 3.
    Lauren DR, Ringrose MA (1997) Determination of the fate of three Fusarium mycotoxins through wet-milling of maize using an improved HPLC analytical technique. Food Addit Contam 14:435–443. doi: 10.1080/02652039709374549 CrossRefGoogle Scholar
  4. 4.
    Schollenberger M, Muller HM, Rufle M, Suchy S, Plank S, Drochner W (2006) Natural occurrence of 16 fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 161:43–52. doi: 10.1007/s11046-005-0199-7 CrossRefGoogle Scholar
  5. 5.
    EFSA (2011) EFSA Panel on Contaminants in the Food Chain. Scientific opinion on the risks for public health related to the presence of zearalenone in food. EFSA J 9(6):2197. doi: 10.2903/j.efsa.2011.2197, 124 ppGoogle Scholar
  6. 6.
    Commission Decision (2007) No 1126/2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off J Eur Union L255:14–17Google Scholar
  7. 7.
    European Committee for Standardization (2013) Mandate for Standardisation Addressed to CEN for Methods of Analysis for Mycotoxins in Food, M/520. European Commission, Health and Consumers Directorate-General, BrusselsGoogle Scholar
  8. 8.
    Köppen R, Riedel J, Proske M, Drzymala SS, Rasenko T, Durmaz V, Weber M, Koch M (2012) Photochemical trans-/cis-isomerization and quantitation of zearalenone in edible oils. J Agric Food Chem 60:11733–11740. doi: 10.1021/jf3037775 CrossRefGoogle Scholar
  9. 9.
    Majerus P, Graf N, Krämer M (2009) Rapid determination of zearalenone in edible oils by HPLC with fluorescence detection. Mycotoxin Res 25:117–121CrossRefGoogle Scholar
  10. 10.
    Kappenstein O, Klaffke HS, Mehlitz I (2005) Bestimmung von Zearalenon in Speiseölen mit GPC und LC-ESI-MS/MS. Mycotoxin Res 21:3–6. doi: 10.1007/bf02954804 CrossRefGoogle Scholar
  11. 11.
    Siegel D, Andrae K, Proske M, Kochan C, Koch M, Weber M, Nehls I (2010) Dynamic covalent hydrazine chemistry as a selective extraction and cleanup technique for the quantification of the Fusarium mycotoxin zearalenone in edible oils. J Chromatogr A 1217:2206–2215. doi: 10.1016/j.chroma.2010.02.019 CrossRefGoogle Scholar
  12. 12.
    Penkert M (2014) Vergleich und Bewertung verschiedener Analysenverfahren zur Bestimmung von Zearalenon in Speiseölen. Master’s thesis, Humboldt-Universität zu Berlin, Berlin, Germany, 2014Google Scholar
  13. 13.
    Pan J, Zhang C, Zhang Z, Li G (2014) Review of online coupling of sample preparation techniques with liquid chromatography. Anal Chim Acta 815:1–15. doi: 10.1016/j.aca.2014.01.017 CrossRefGoogle Scholar
  14. 14.
    Emerson DW, Emerson RR, Joshi SC, Sorensen EM, Turek JE (1979) Polymer-bound sulfonylhydrazine functionality. Preparation, characterization, and reactions of copoly(styrene-divinylbenzenesulfonylhydrazine). J Org Chem 44:4634–4640. doi: 10.1021/jo00393a036 CrossRefGoogle Scholar
  15. 15.
    Drzymala SS, Riedel J, Köppen R, Garbe LA, Koch M (2014) Preparation of 13C-labelled cis-zearalenone and its application as internal standard in stable isotope dilution analysis. World Mycotoxin J 7:45–52. doi: 10.3920/wmj2013.1610 CrossRefGoogle Scholar
  16. 16.
    Commission Regulation (EC) 401/2006 (2006) Laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off J Eur Union L70:12–34Google Scholar
  17. 17.
    Brady OL (1931) The use of 2, 4-dinitrophenylhydrazine as a reagent for carbonyl compounds. J Chem Soc 756–759. doi: 10.1039/JR9310000756
  18. 18.
    van Leeuwen SM, Hendriksen L, Karst U (2004) Determination of aldehydes and ketones using derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography-atmospheric pressure photoionization-mass spectrometry. J Chromatogr A 1058:107–112. doi: 10.1016/j.chroma.2004.08.149 CrossRefGoogle Scholar
  19. 19.
    Peters R, Hellenbrand J, Mengerink Y, Van der Wal S (2004) On-line determination of carboxylic acids, aldehydes and ketones by high-performance liquid chromatography-diode array detection-atmospheric pressure chemical ionisation mass spectrometry after derivatization with 2-nitrophenylhydrazine. J Chromatogr A 1031:35–50. doi: 10.1016/j.chroma.2003.10.100 CrossRefGoogle Scholar
  20. 20.
    Miwa H (2000) High-performance liquid chromatographic determination of mono-, poly- and hydroxycarboxylic acids in foods and beverages as their 2-nitrophenylhydrazides. J Chromatogr A 881:365–385. doi: 10.1016/S0021-9673(00)00284-3 CrossRefGoogle Scholar
  21. 21.
    Zöllner P, Berner D, Jodlbauer J, Lindner W (2000) Determination of zearalenone and its metabolites α-and β-zearalenol in beer samples by high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B 738:233–241. doi: 10.1016/S0378-4347(99)00521-6 CrossRefGoogle Scholar
  22. 22.
    Shreeve B, Patterson D, Roberts B (1979) The ‘carry-over’ of aflatoxin, ochratoxin and zearalenone from naturally contaminated feed to tissues, urine and milk of dairy cows. Food Cosm Toxicol 17:151–152. doi: 10.1016/0015-6264(79)90215-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sarah S. Drzymala
    • 1
  • Stefan Weiz
    • 2
  • Julia Heinze
    • 2
  • Silvia Marten
    • 2
  • Carsten Prinz
    • 1
  • Annett Zimathies
    • 1
  • Leif-Alexander Garbe
    • 3
  • Matthias Koch
    • 1
  1. 1.Department 1 Analytical Chemistry, Reference MaterialsFederal Institute for Materials Research and Testing (BAM)BerlinGermany
  2. 2.KNAUER Wissenschaftliche Geräte GmbHBerlinGermany
  3. 3.Department of Biotechnology, Institute of BioanalyticsTechnische Universität BerlinBerlinGermany

Personalised recommendations