Analytical and Bioanalytical Chemistry

, Volume 407, Issue 12, pp 3313–3323 | Cite as

Bright or dark immune complexes of anti-TAMRA antibodies for adapted fluorescence-based bioanalysis

  • Ursula Eisold
  • Frank Sellrie
  • Jörg A. Schenk
  • Christine Lenz
  • Walter F. M. Stöcklein
  • Michael U. KumkeEmail author
Research Paper


Fluorescence labels, for example fluorescein or rhodamin derivatives, are widely used in bioanalysis applications including lateral-flow assays, PCR, and fluorescence microscopy. Depending on the layout of the particular application, fluorescence quenching or enhancement may be desired as the detection principle. Especially for multiplexed applications or high-brightness requirements, a tunable fluorescence probe can be beneficial. The alterations in the photophysics of rhodamine derivatives upon binding to two different anti-TAMRA antibodies were investigated by absorption and fluorescence-spectroscopy techniques, especially determining the fluorescence decay time and steady-state and time-resolved fluorescence anisotropy. Two monoclonal anti-TAMRA antibodies were generated by the hybridoma technique. Although surface-plasmon-resonance measurements clearly proved the high affinity of both antibodies towards 5-TAMRA, the observed effects on the fluorescence of rhodamine derivatives were very different. Depending on the anti-TAMRA antibody either a strong fluorescence quenching (G71-DC7) or a distinct fluorescence enhancement (G71-BE11) upon formation of the immune complex was observed. Additional rhodamine derivatives were used to gain further information on the binding interaction. The data reveal that such haptens as 5-TAMRA could generate different paratopes with equal binding affinities but different binding interactions, which provide the opportunity to adapt bioanalysis methods including immunoassays for optimized detection principles for the same hapten depending on the specific requirements.

Graphical Abstract

The fluorescence of 5-TAMRA is altered upon antibody binding. Depending on the antibody used the fluorescence is heavily quenched (left) or enhanced (right) by the binding interaction


mAb Fluorescence Anisotropy Exciplex Energy-transfer probe 



The authors wish to thank Dietmar Knopp for providing the C6 ET probe.

Supplementary material

216_2015_8538_MOESM1_ESM.pdf (737 kb)
ESM 1 (PDF 737 kb)


  1. 1.
    Yan X, Li H, Yan Y, Su X (2014) Developments in pesticide analysis by multianalyte immunoassays: a review. Anal Methods 6:3543–3554CrossRefGoogle Scholar
  2. 2.
    McGrath TF, Elliott CT, Fodey TL (2012) Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 403:75–92CrossRefGoogle Scholar
  3. 3.
    Togashi DM, Szczupak B, Ryder AG, Calvet A, O’Loughlin M (2009) Investigating tryptophan quenching of fluorescein fluorescence under protolytic equilibrium. J Phys Chem A 113:2757–2767CrossRefGoogle Scholar
  4. 4.
    Voss EW Jr, Croney JC, Jameson DM (2002) Discrete bathochromic shifts exhibited by fluorescein ligand bound to rabbit polyclonal anti-fluorescein Fab fragments. J Protein Chem 21:231–241CrossRefGoogle Scholar
  5. 5.
    Voss EW Jr, Croney JC, Jameson DM (2001) Resolution of rabbit polyclonal anti-fluorescein Fab (IgG) fragments into subpopulations differing in affinity and spectral properties of bound ligand. Mol Immunol 38:35–44CrossRefGoogle Scholar
  6. 6.
    Mummert ME, Voss EW Jr (1998) Effects of secondary forces on a high affinity monoclonal IgM anti-fluorescein antibody possessing cryoglobulin and other cross-reactive properties. Mol Immunol 35:103–113CrossRefGoogle Scholar
  7. 7.
    Sellrie F, Warsinke A, Micheel B (2006) Homogeneous indirect fluorescence quenching immunoassay for the determination of low molecular weight substances. Anal Bioanal Chem 386:206–210CrossRefGoogle Scholar
  8. 8.
    Schenk JA, Sellrie F, Böttger V, Menning A, Stöcklein WFM, Micheel B (2007) Generation and application of a fluorescein-specific single chain antibody. Biochimie 89:1304–1311CrossRefGoogle Scholar
  9. 9.
    Stech M, Merk H, Schenk JA, Stöcklein WFM, Wüstenhagen D, Micheel B, Duschl C, Bier FF, Kubick S (2012) Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system. J Biotechnol 164:220–231CrossRefGoogle Scholar
  10. 10.
    Tan C, Gajovic-Eichelmann N, Polzius R, Hildebrandt N, Bier FF (2010) Direct detection of Δ9-tetrahydrocannabinol in aqueous samples using a homogeneous increasing fluorescence immunoassay (HiFi). Anal Bioanal Chem 398:2133–2140CrossRefGoogle Scholar
  11. 11.
    Sellrie F, Beck M, Hildebrandt N, Micheel B (2010) A homogeneous time-resolved fluoroimmunoassay (TR-FIA) using antibody mediated luminescence quenching. Anal Methods 2:1298–1301CrossRefGoogle Scholar
  12. 12.
    Hemmilä I, Malminen O, Mikola H, Lövgren T (1988) Homogeneous time-resolved fluoroimmunoassay of thyroxin in serum. Clin Chem 34:2320–2322Google Scholar
  13. 13.
    Voigt W (2005) Sulforhodamine B assay and chemosensitivity. Methods Mol Med 110:39–48Google Scholar
  14. 14.
    Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116CrossRefGoogle Scholar
  15. 15.
    Hermanson GT (2013) Bioconjugate Techniques, 3rd edn. Press, AcademicGoogle Scholar
  16. 16.
    Du H, Disney MD, Miller BL, Krauss TD (2003) Hybridization-based of DNA hairpins on Au surfaces: prototypical “molecular beacon” biosensors. J Am Chem Soc 125:4012–4013CrossRefGoogle Scholar
  17. 17.
    Jeong HJ, Ohmuro-Matsuyama Y, Ohashi H, Ohsawa F, Tatsu Y, Inagaki M, Ueda H (2013) Detection of vimentin serine phosphorylation by multicolor Quenchbodies. Biosens Bioelectron 40:17–23CrossRefGoogle Scholar
  18. 18.
    Abe R, Ohashi H, Iijima I, Ihara M, Takagi H, Hohsaka T, Ueda H (2011) "Quenchbodies": quench-based antibody probes that show antigen-dependent fluorescence. J Am Chem Soc 133:17386–17394CrossRefGoogle Scholar
  19. 19.
    Abe R, Jeong HJ, Arakawa D, Dong JH, Ohashi H, Kaigome R, Saiki F, Yamane K, Takagi H, Ueda H (2014) Ultra Q-bodies: quench-based antibody probes that utilize dye-dye interactions with enhanced antigen-dependent fluorescence. Sci Rep 4:4640CrossRefGoogle Scholar
  20. 20.
    Sellrie F, Graser E, Lenz C, Hillebrand T, Schenk JA (2013) Specific DNA detection using antibody mediated fluorescence quenching. Biosens Bioelectron 42:512–515CrossRefGoogle Scholar
  21. 21.
    Inal S, Kölsch JD, Sellrie F, Schenk JA, Wischerhoff E, Laschewsky A, Neher D (2013) A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein. J Mater Chem B 1:6373–6381CrossRefGoogle Scholar
  22. 22.
    Sellrie F, Lenz C, Andersson A, Wilhelmsson LM, Schenk JA (2014) Antibody mediated fluorescence enhancement of nucleoside analogue 1,3-diaza-2-oxophenoxazine (tC°). Talanta 124:67–70CrossRefGoogle Scholar
  23. 23.
    Schenk JA, Matyssek F, Micheel B (2004) Interleukin 4 increases the antibody response against Rubisco in mice. In Vivo 18:649–652Google Scholar
  24. 24.
    Schenk JA, Fettke J, Lenz C, Albers K, Mallwitz F, Gajovic-Eichelmann N, Ehrentreich-Förster E, Kusch E, Sellrie F (2012) Secretory leukocyte protease inhibitor (SLPI) might contaminate murine monoclonal antibodies after purification on protein G. J Biotechnol 158:34–35CrossRefGoogle Scholar
  25. 25.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. SpringerGoogle Scholar
  26. 26.
    Valeur B (2002) Molecular fluorescence - principles and applications. Wiley-VCH Verlag GmbH, WeinheimGoogle Scholar
  27. 27.
    Lipari G, Szabo A (1980) Effect of libration motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J 30:489–506CrossRefGoogle Scholar
  28. 28.
    Kinosita K, Kawato S, Ikegami A (1977) A theory of fluorescence polarization decay in membranes. Biophys J 20:289–305CrossRefGoogle Scholar
  29. 29.
    Unruh JR, Gokulrangan G, Wilson GS, Johnson CK (2005) Fluorescence properties of fluorescein, tetramethylrhodamine and Texas Red linked to a DNA Aptamer. Photochem Photobiol 81:682–690CrossRefGoogle Scholar
  30. 30.
    Magde D, Rojas GE, Seybold PG (1999) Solvent dependence of the fluorescence lifetime of xanthene dyes. Photochem Photobiol 70:737–744CrossRefGoogle Scholar
  31. 31.
    Vult von Steyern F, Josefsson JO, Tagerud S (1996) Rhodamine B, a fluorescent probe for acidic organelles in denervated skeletal muscle. J Histochem Cytochem 44:267–274CrossRefGoogle Scholar
  32. 32.
    López Arbeloa T, López Arbeloa F, Hernández Bartolomé P, López Arbeloa I (1992) On the mechanism of radiationless deactivation of rhodamines. Chem Phys 160:123–130CrossRefGoogle Scholar
  33. 33.
    Kupstat A, Knopp D, Niessner R, Kumke MU (2010) Novel intramolecular energy transfer probe for the detection of benzo[a]pyrene metabolites in a homogeneous competitive fluorescence immunoassay. J Phys Chem B 114:1666–1673CrossRefGoogle Scholar
  34. 34.
    Sivakumar R, Naveenraj S, Anandan S (2011) Interactions of serum albumins with antitumor agent benzo[a]phenazine – a spectroscopy study. JOL 131:2195–2201Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ursula Eisold
    • 1
  • Frank Sellrie
    • 2
  • Jörg A. Schenk
    • 2
    • 3
  • Christine Lenz
    • 2
  • Walter F. M. Stöcklein
    • 4
  • Michael U. Kumke
    • 1
    Email author
  1. 1.Department of Chemistry, Physical ChemistryUniversität PotsdamPotsdamGermany
  2. 2.UP Transfer GmbHPotsdamGermany
  3. 3.Hybrotec GmbHPotsdamGermany
  4. 4.Fraunhofer Institute for Cell Therapy and Immunology (IZI)PotsdamGermany

Personalised recommendations