Skip to main content
Log in

Identification of carbonylated lipids from different phospholipid classes by shotgun and LC-MS lipidomics

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Oxidized lipids play a significant role in the pathogenesis of numerous oxidative stress-related human disorders, such as atherosclerosis, obesity, inflammation, and autoimmune diseases. Lipid peroxidation, induced by reactive oxygen and nitrogen species, yields a high variety of modified lipids. Among them, carbonylated lipid peroxidation products (oxoLPP), formed by oxidation of the fatty acid moiety yielding aldehydes or ketones (carbonyl groups), are electrophilic compounds that are able to modify nucleophilic substrates like proteins, nucleic acid, and aminophospholipids. Some carbonylated phosphatidylcholines possess even pro-inflammatory activities. However, little is known about oxoLPP derived from other phospholipid (PL) classes. Here, we present a new analytical strategy based on the mass spectrometry (MS) of PL-oxoLPP derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). Shotgun MS revealed many oxoLPP derived from in vitro oxidized glycerophosphatidylglycerols (PG, 31), glycerophosphatidylcholine (PC, 23), glycerophosphatidylethanolamine (PE, 34), glycerophosphatidylserines (PS, 7), glycerophosphatidic acids (PA, 17), and phosphatidylinositiolphosphates (PIP, 6) vesicles. This data were used to optimize LipidXplorer-assisted identification, and a python-based post-processing script was developed to increase both throughput and accuracy. When applied to full lipid extracts from rat primary cardiomyocytes treated with peroxynitrite donor SIN-1, ten PL-bound oxoLPP were unambiguously identified by LC-MS, including two PC-, two PE-, one PG-, two PS-, and three PA-derived species. Some of the well-known carbonylated PC were detected, while most PL-oxoLPP were shown for the first time.

Overview of analytical and bioinformatics approach for detection and identification of carbonylated phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

CHH:

7-(Diethylamino)coumarin-3-carbohydrazide

CID:

Collision-induced dissociation

DAG:

Diacylglycerols

DBE:

Double bond equivalents

DDA:

Data-dependent acquisition

DHA:

Docosahexaenoic acid

ESI:

Electrospray

FA:

Fatty acid

GPF:

Gas phase fractionation

HG:

Head group

HOOA-PC:

1-Palmitoyl-2-(5-hydroxy-8-oxo-oct-6-enoyl)-glycerophosphatidylcholine

LA:

Linoleic acid

LC-MS:

Liquid chromatography coupled to mass spectrometry

LPP:

Lipid peroxidation products

MFQL:

Molecular fragmentation query language

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

MTBE:

Methyl-tert-butyl ether

nCE:

Normalized collision energy

OA:

Oleic acid

OAP:

Oxygen addition products

OCP:

Oxygen cleavage products

oxoLPP:

Carbonylated lipid peroxidation products

oxPC:

Oxidized phosphatidylcholine

PA:

Glycerophosphatidic acids

PAPC:

1-Palmitoyl-2-arachidonyl-glycerophosphatidylcholine

PAPE:

1-Palmitoyl-2-arachidonoyl-glycerophosphatidylethanolamine

PAPG:

1-Palmitoyl-2-arachidonoyl-glycerophosphatidylglycerol

PC:

Glycerophosphatidylcholine

PDPC:

1-Palmitoyl-2-docosahexaenoyl-glycerophosphatidylcholine

PDPE:

1-Palmitoyl-2-docosahexaenoyl-glycerophosphatidylethanolamine

PE:

Glycerophosphatidylethanolamine

PI:

Glycerophosphatidylinositols

PIP:

Phosphatidylinositiolphosphates

PL:

Glycerophospholipids

PLPA:

1-Palmitoyl-2-linoleoyl-glycerophosphatidic acid

PLPC:

1-Palmitoyl-2-linoleoyl-glycerophosphatidylcholine

PLPE:

1-Palmitoyl-2-linoleoyl-glycerophosphatidylethanolamine

PLPG:

1-Palmitoyl-2-linoleoyl-glycerophosphatidylglycerol

PLPS:

1-Palmitoyl-2-linoleoyl-glycerophosphatidylserine

POPA:

1-Palmitoyl-2-oleoyl-glycerophosphatidic acid

POPC:

1-Palmitoyl-2-oleoyl-glycerophosphatidylcholine

POPE:

1-Palmitoyl-2-oleoyl-glycerophosphatidylethanolamine

POPG:

1-Palmitoyl-2-oleoyl-glycerophosphatidylglycerol

POPS:

1-Palmitoyl-2-oleoyl-glycerophosphatidylserine

POVPC:

1-Palmitoyl-2-(5-oxo-valeryl)-glycerophosphatidylcholine

PS:

Glycerophosphatidylserines

PUFA:

Polyunsaturated fatty acid

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RPC:

Reversed phase chromatography

SAPC:

1-Stearoyl-2-arachidonoylglycerophosphatidylcholine

SAPIP:

1-Stearoyl-2-arachidonoyl-gylcerophosphatidylinositolphosphate

SIN-1:

3-Morpholinosydnonimine

SLPIP:

1-Stearoyl-2-linoleoyl-glycerophosphatidylinositolphosphate

References

  1. Dowhan W, Bogdanov M, Mileykovskaya E (2008) Chapter 1—functional roles of lipids in membranes. In: Deve V (ed) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, San Diego

    Google Scholar 

  2. Yeagle PL (1989) Lipid regulation of cell membrane structure and function. FASEB J 3(7):1833–1842

    CAS  Google Scholar 

  3. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9(2):162–176

    Article  CAS  Google Scholar 

  4. Doria ML, Cotrim CZ, Simoes C, Macedo B, Domingues P, Domingues MR, Helguero LA (2013) Lipidomic analysis of phospholipids from human mammary epithelial and breast cancer cell lines. J Cell Physiol 228(2):457–468

    Article  CAS  Google Scholar 

  5. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079

    Article  CAS  Google Scholar 

  6. Schwudke D, Schuhmann K, Herzog R, Bornstein SR, Shevchenko A (2011) Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harb Perspect Biol 3(9):a004614

    Article  Google Scholar 

  7. Davi G, Falco A, Patrono C (2005) Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal 7(1–2):256–268

    Article  CAS  Google Scholar 

  8. Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 51(7):1302–1319

    Article  CAS  Google Scholar 

  9. Yagi K (1987) Lipid peroxides and human diseases. Chem Phys Lipids 45(2–4):337–351

    Article  CAS  Google Scholar 

  10. Sultana R, Perluigi M, Allan Butterfield D (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169

    Article  CAS  Google Scholar 

  11. Shao B, Heinecke JW (2009) HDL, lipid peroxidation, and atherosclerosis. J Lipid Res 50(4):599–601

    Article  CAS  Google Scholar 

  12. Esterbauer H, Wag G, Puhl H (1993) Lipid peroxidation and its role in atherosclerosis. Br Med Bull 49(3):566–576

    CAS  Google Scholar 

  13. Watson AD (2006) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47(10):2101–2111

    Article  CAS  Google Scholar 

  14. Olusi SO (2002) Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotectic enzymes in humans. Int J Obes Relat Metab Disord 26(9):1159–1164

    Article  CAS  Google Scholar 

  15. Basu S, Riserus U, Turpeinen A, Vessby B (2000) Conjugated linoleic acid induces lipid peroxidation in men with abdominal obesity. Clin Sci (Lond) 99(6):511–516

    Article  CAS  Google Scholar 

  16. Zhang R, Brennan M-L, Shen Z, MacPherson JC, Schmitt D, Molenda CE, Hazen SL (2002) Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J Biol Chem 277(48):46116–46122

    Article  CAS  Google Scholar 

  17. Minoguchi K, Yokoe T, Tanaka A, Ohta S, Hirano T, Yoshino G, O’Donnell CP, Adachi M (2006) Association between lipid peroxidation and inflammation in obstructive sleep apnoea. Eur Respir J 28(2):378–385

    Article  CAS  Google Scholar 

  18. Michel P, Eggert W, Albrecht-Nebe H, Grune T (1997) Increased lipid peroxidation in children with autoimmune diseases. Acta Paediatr 86(6):609–612

    Article  CAS  Google Scholar 

  19. Wang G, Konig R, Ansari GA, Khan MF (2008) Lipid peroxidation-derived aldehyde-protein adducts contribute to trichloroethene-mediated autoimmunity via activation of CD4+ T cells. Free Radic Biol Med 44(7):1475–1482

    Article  CAS  Google Scholar 

  20. Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338(1):668–676

    Article  CAS  Google Scholar 

  21. Reis A, Spickett CM (2012) Chemistry of phospholipid oxidation. BBA-Biomembr 1818(10):2374–2387

    Article  CAS  Google Scholar 

  22. Milic I, Fedorova M, Teuber K, Schiller J, Hoffmann R (2012) Characterization of oxidation products from 1-palmitoyl-2-linoleoyl-sn-glycerophosphatidylcholine in aqueous solutions and their reactions with cysteine, histidine and lysine residues. Chem Phys Lipids 165(2):186–196

    Article  CAS  Google Scholar 

  23. Rauniyar N, Prokai L (2009) Detection and identification of 4-hydroxy-2-nonenal Schiff-base adducts along with products of Michael addition using data-dependent neutral loss-driven MS(3) acquisition: method evaluation through an in vitro study on cytochrome c oxidase modifications. Proteomics 9(22):5188–5193

    Article  CAS  Google Scholar 

  24. Rikans LE, Hornbrook KR (1997) Lipid peroxidation, antioxidant protection and aging. BBA-Mol Basis Dis 1362(2–3):116–127

    Article  CAS  Google Scholar 

  25. Spiteller G (2001) Lipid peroxidation in aging and age-dependent diseases. Exp Gerontol 36(9):1425–1457

    Article  CAS  Google Scholar 

  26. Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, Morrow JD (2002) Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33(5):620–626

    Article  CAS  Google Scholar 

  27. Guo L, Chen Z, Amarnath V, Davies SS (2012) Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation. Free Radic Biol Med 53(6):1226–1238

    Article  CAS  Google Scholar 

  28. Annibal A, Schubert K, Wagner U, Hoffmann R, Schiller J, Fedorova M (2014) New covalent modifications of phosphatidylethanolamine by alkanals: mass spectrometry based structural characterization and biological effects. J Mass Spectrom 49(7):557–569

    Article  CAS  Google Scholar 

  29. Bacot S, Bernoud-Hubac N, Baddas N, Chantegrel B, Deshayes C, Doutheau A, Lagarde M, Guichardant M (2003) Covalent binding of hydroxy-alkenals 4-HDDE, 4-HHE, and 4-HNE to ethanolamine phospholipid subclasses. J Lipid Res 44(5):917–926

    Article  CAS  Google Scholar 

  30. Berliner JA, Leitinger N, Tsimikas S (2009) The role of oxidized phospholipids in atherosclerosis. J Lipid Res 50(Suppl):S207–S212

    Google Scholar 

  31. Berliner JA, Watson AD (2005) A role for oxidized phospholipids in atherosclerosis. N Engl J Med 353(1):9–11

    Article  CAS  Google Scholar 

  32. Stemmer U, Hermetter A (2012) Protein modification by aldehydophospholipids and its functional consequences. BBA-Biomembr 1818(10):2436–2445

    Article  CAS  Google Scholar 

  33. Loidl A, Sevcsik E, Riesenhuber G, Deigner H-P, Hermetter A (2003) Oxidized phospholipids in minimally modified low density lipoprotein induce apoptotic signaling via activation of acid sphingomyelinase in arterial smooth muscle cells. J Biol Chem 278(35):32921–32928

    Article  CAS  Google Scholar 

  34. Fruhwirth GO, Moumtzi A, Loidl A, Ingolic E, Hermetter A (2006) The oxidized phospholipids POVPC and PGPC inhibit growth and induce apoptosis in vascular smooth muscle cells. Biochim Biophys Acta 1761(9):1060–1069

    Article  CAS  Google Scholar 

  35. Podrez EA, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M, Finton PJ, Shan L, Febbraio M, Hajjar DP, Silverstein RL, Hoff HF, Salomon RG, Hazen SL (2002) A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem 277(41):38517–38523

    Article  CAS  Google Scholar 

  36. Milic I, Fedorova M (2015) Derivatization and detection of small aliphatic and lipid-bound carbonylated lipid peroxidation products by ESI-MS. Methods Mol Biol 1208:3–20

    Article  Google Scholar 

  37. Milic I, Hoffmann R, Fedorova M (2013) Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry. Anal Chem 85(1):156–162

    Article  CAS  Google Scholar 

  38. Herzog R, Schuhmann K, Schwudke D, Sampaio JL, Bornstein SR, Schroeder M, Shevchenko A (2012) LipidXplorer: a software for consensual cross-platform lipidomics. PLoS ONE 7(1):e29851

    Article  CAS  Google Scholar 

  39. Herzog R, Schwudke D, Schuhmann K, Sampaio JL, Bornstein SR, Schroeder M, Shevchenko A (2011) A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol 12(1):R8

    Article  CAS  Google Scholar 

  40. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49(5):1137–1146

    Article  CAS  Google Scholar 

  41. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak M-Y, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30(10):918–920

    Article  CAS  Google Scholar 

  42. Reis A, Domingues P, Ferrer-Correia AJ, Domingues MR (2004) Fragmentation study of short-chain products derived from oxidation of diacylphosphatidylcholines by electrospray tandem mass spectrometry: identification of novel short-chain products. Rapid Commun Mass Spectrom 18(23):2849–2858

    Article  CAS  Google Scholar 

  43. Spickett CM, Reis A, Pitt AR (2011) Identification of oxidized phospholipids by electrospray ionization mass spectrometry and LC-MS using a QQLIT instrument. Free Radic Biol Med 51(12):2133–2149

    Article  CAS  Google Scholar 

  44. Reis A, Domingues MRM, Amado FML, Ferrer-Correia AJ, Domingues P (2007) Radical peroxidation of palmitoyl-lineloyl-glycerophosphocholine liposomes: identification of long-chain oxidised products by liquid chromatography–tandem mass spectrometry. J Chromatogr B 855(2):186–199

    Article  CAS  Google Scholar 

  45. Mak TD, Laiakis EC, Goudarzi M, Fornace AJ Jr (2014) MetaboLyzer: a novel statistical workflow for analyzing postprocessed LC-MS metabolomics data. Anal Chem 86(1):506–513

    Article  CAS  Google Scholar 

  46. Kind T, Okazaki Y, Saito K, Fiehn O (2014) LipidBlast templates as flexible tools for creating new in-silico tandem mass spectral libraries. Anal Chem 86(22):11024–11027

    Article  CAS  Google Scholar 

  47. Husen P, Tarasov K, Katafiasz M, Sokol E, Vogt J, Baumgart J, Nitsch R, Ekroos K, Ejsing CS (2013) Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLoS ONE 8(11):e79736

    Article  CAS  Google Scholar 

  48. Song H, Hsu F-F, Ladenson J, Turk J (2007) Algorithm for processing raw mass spectrometric data to identify and quantitate complex lipid molecular species in mixtures by data-dependent scanning and fragment ion database searching. J Am Soc Mass Spectrom 18(10):1848–1858

    Article  CAS  Google Scholar 

  49. Hubner G, Crone C, Lindner B (2009) lipID—a software tool for automated assignment of lipids in mass spectra. J Mass Spectrom 44(12):1676–1683

    Google Scholar 

  50. Strohalm M, Kavan D, Novak P, Volny M, Havlicek V (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82(11):4648–4651

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. Ralf Hoffmann (Institute of Bioanalytical Chemistry, University of Leipzig) for providing access to his laboratory and mass spectrometers. Financial support from European Regional Development Fund (ERDF, European Union and Free State Saxony; 100146238 and 100121468 to M.F) and a stipend to I.M. provided by Universität Leipzig are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fedorova.

Additional information

Published in the topical collection Lipidomics with guest editor Michal Holčapek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Z., Milic, I. & Fedorova, M. Identification of carbonylated lipids from different phospholipid classes by shotgun and LC-MS lipidomics. Anal Bioanal Chem 407, 5161–5173 (2015). https://doi.org/10.1007/s00216-015-8536-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8536-2

Keywords

Navigation